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A Comparative Analysis of Machine Learning Models for the
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Abstract: Introduction: Early detection of type 2 diabetes is essential for preventing long-term com-
plications. However, screening the entire population for diabetes is not cost-effective, so identifying
individuals at high risk for this disease is crucial. The aim of this study was to compare the perfor-
mance of five diverse machine learning (ML) models in classifying undiagnosed diabetes using large
heterogeneous datasets. Methods: We used machine learning data from several years of the National
Health and Nutrition Examination Survey (NHANES) from 2005 to 2018 to identify people with
undiagnosed diabetes. The dataset included 45,431 participants, and biochemical confirmation of
glucose control (HbA1c) were used to identify undiagnosed diabetes. The predictors were based on
simple and clinically obtainable variables, which could be feasible for prescreening for diabetes. We
included five ML models for comparison: random forest, AdaBoost, RUSBoost, LogitBoost, and a
neural network. Results: The prevalence of undiagnosed diabetes was 4%. For the classification of
undiagnosed diabetes, the area under the ROC curve (AUC) values were between 0.776 and 0.806.
The positive predictive values (PPVs) were between 0.083 and 0.091, the negative predictive values
(NPVs) were between 0.984 and 0.99, and the sensitivities were between 0.742 and 0.871. Conclusion:
We have demonstrated that several types of classification models can accurately classify undiagnosed
diabetes from simple and clinically obtainable variables. These results suggest that the use of machine
learning for prescreening for undiagnosed diabetes could be a useful tool in clinical practice.

Keywords: undiagnosed diabetes; diabetes mellitus; machine learning; prescreening; clinically
obtainable variables; NHANES

1. Introduction

The prevalence of type 2 diabetes is on the rise, leading to increased occurrences
of illness and mortality and escalated healthcare expenditures. The incidence of type 2
diabetes varies across regions such as the UK, the U.S., China, and the United Arab Emirates,
encompassing a range of 7% to 34% of the respective population [1,2]. Of individuals in the
United States, 9.7% have received a formal diagnosis of diabetes, while an additional 4.3%
are living with diabetes but remain undiagnosed. Notably, approximately 30% of those
who eventually receive a diabetes diagnosis exhibit associated complications [3].

The timely identification of type 2 diabetes holds significance due to its potential to sig-
nificantly mitigate long-term complications through rigorous diabetes management. Never-
theless, conducting diabetes screening across the entire population lacks cost-effectiveness,
thus emphasizing the need to prioritize the recognition of individuals with a heightened
susceptibility to the condition [4,5]. Numerous investigations regarding diabetes screening
have been conducted within the previous ten years. Risk prediction or stratification models
can serve the purpose of identifying individuals at an elevated risk level for diabetes,
allowing for subsequent targeted testing. Typically, these models incorporate a blend of
variables, encompassing weight, lifestyle, familial background, and clinical measurements,
and are formulated through the utilization of multivariable statistical techniques [6–8].
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Nevertheless, numerous of these models are not extensively employed within clinical
practice, primarily owing to their foundation on data gathered for alternate objectives.
This circumstance can decrease the relevance of these findings when applied to a broader
population [9]. Additionally, attempts are often made to create models that are easy to
use in clinical practice. This is often accomplished by condensing continuous variables
into distinct categories or opting for predictors in a subjective manner. However, such
approaches can result in excessive simplification and a consequent decrease in the models’
overall efficacy [10,11].

Analyzing data on diabetes can be difficult because medical data often exhibit non-
linear, nonnormal, correlated, and complex characteristics [12]. Machine learning (ML)
methods have the potential to structure and utilize these complex patterns to classify dis-
eases. It has previously been reported that ML could be utilized in diabetes for different
purposes [13–19].

Others have reported ML approaches for the detection of diabetes and prediabetes [20–25].
However, it is still unclear which ML methods are best at capturing the complexity of the
data to aid in selecting people at high risk of undiagnosed diabetes.

The objective of this study was to compare the performance of five diverse ML models
for classifying undiagnosed diabetes using a large heterogeneous dataset.

2. Methods
2.1. Data Source

To identify individuals with undiagnosed diabetes using machine learning, we used
data from multiple years of the National Health and Nutrition Examination Survey
(NHANES) from 2005 to 2018 [26], which included HbA1c (glycated hemoglobin) data.
HbA1c is recommended for the diagnosis of diabetes in most patient groups by the Ameri-
can Diabetes Association [27]. The NHANES study was executed by the National Center for
Health Statistics, a division of the Centers for Disease Control and Prevention. This research
employs intricate sampling techniques to determine the demographic composition of the
U.S. populace. This inclusivity extends to the overrepresentation of subpopulations, such
as elderly individuals and various racial and ethnic minorities. Over the period spanning
2005 to 2018, a comprehensive total of 70,190 participants were enrolled in the NHANES.

The present investigation involved individuals aged >20 years, excluding pregnant
individuals and those with a documented diabetes diagnosis. A participant’s diabetes
diagnosis was ascertained by their affirmative response to the survey. Have you ever been
informed by a medical professional that you have diabetes?

Using these data, we developed and compared ML models for diabetes prescreening
in patients with undiagnosed diabetes.

2.2. End Points

Our objective was to compare five machine learning models for the detection of
undiagnosed diabetes (prevalence) in the NHANES cohort.

We included two binary end points for classification:
The primary endpoint (ap1) for the classification of undiagnosed diabetes was defined

as an HbA1c ≥ 6.5% (48 mmol/mol) without a previous diagnosis of diabetes.
The secondary endpoint (ap2) was for the classification of undiagnosed diabetes

(defined by an HbA1c ≥ 6.5% (48 mmol/mol) without a previous diagnosis of diabetes) or
known diabetes.

2.3. Variables and Selection

We included simple variables commonly associated with the risk of diabetes that could
be used in a practical prescreening procedure. The variables included age, sex, ethnicity,
weight, height, waist circumference, sleep duration, BMI, blood pressure (BP), physical
activity, smoking, alcohol use, education, and the ratio of family income to poverty. Variable
selection were performed according to an automatic approach using the training data, 3-fold
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cross-validation, and receiver operating characteristic (ROC) area under the curve (AUC)
improvements as criteria for the inclusion of variables. Missing data among variables used
for classification and prediction are common both in studies and during clinical usage.
However, the chosen ML methods implemented in this study can incorporate missing
values into the modeling approach without the need for imputation or case deletion [28].

2.4. Model Development

We included five ML models for comparison: random forest, AdaBoost, RUSBoost,
LogitBoost, and a neural network. These specific models were compared because previous
studies have shown high performance with ensemble and neural network models in general
disease classification [29,30]. The rationale behind selecting these models is rooted in the
collective strengths they bring to the task of disease classification, which aims to provide a
comprehensive comparison across diverse approaches. By including models with different
underlying mechanisms (boosting, bagging, or neural networks), we aim to identify the
most suitable model for our specific dataset and research objectives.

The models were trained/developed using a sample of 80% (training data) of the
individuals in each group and tested on the remaining 20% (test data). This process was
conducted in such a manner that 20% of the data were saved for testing the final models;
hence, the test data were not used to optimize the models further. The training data were
used to select variables through forward selection and to optimize and train the models;
cross-validation was used to minimize overfitting of the models. Due to a class imbalance
in the dataset, the optimization was conducted with an evaluation criterion based on the
precision-recall curve area under the curve (PR-AUC):

A schematic of the procedure is illustrated in Figure 1.
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Figure 1. Illustrates model development and performance testing. Figure 1. Illustrates model development and performance testing.

All the models were developed and implemented using MATLAB R2021b (MathWorks,
Natick, MA, USA).

2.4.1. Random Forest Model

The random forest algorithm is a machine learning method [31] that uses a group of
decision trees to make predictions. During the training process, many decision trees are
constructed, and the output of the random forest is determined by the majority vote of the
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trees. Each tree in the forest are based on a random sample of data. The final prediction
is made by combining the predictions of all the individual trees. As the number of trees
in the forest increases, the accuracy of the predictions tends to improve. Hyperparameter
estimation was performed using a grid search strategy. We optimized the number of trees,
depth of trees, and minimum number of samples to perform splitting.

2.4.2. AdaBoost

Adaptive boosting (AdaBoost) [32] is an ensemble learning algorithm that is used to
improve the accuracy of a weak learner (such as a decision tree). This process involves
iteratively training the weak learner and adjusting the weights of the training data at each
iteration so that the misclassified examples are given higher weights. The final model is a
combination of all the weak learners, with each weak learner contributing a weight to the
final prediction. One of the main benefits of AdaBoost is that it is simple to implement and
relatively resistant to overfitting problems, making it a good choice for situations where the
training data are limited. Hyperparameter estimation was performed using a grid search
strategy. We optimized the number of weak learners and the learning rate.

2.4.3. RUSBoost

Random undersampling boosting (RUSBoost) [33] is a variant of the AdaBoost al-
gorithm that are designed to handle imbalanced datasets. The imbalanced datasets are
datasets in which one class (the minority class; in our case, individuals with undiagnosed
diabetes) has significantly fewer examples than the other class (the majority class; in our
cases, individuals without undiagnosed diabetes). In such cases of imbalance, AdaBoost
can be prone to bias toward the majority class, leading to poor performance for the minority
class. RUSBoost addresses this issue by randomly undersampling the majority class at each
iteration. By undersampling the majority class, RUSBoost ensures that each weak learner
are trained on a balanced dataset. Hyperparameter estimation was performed using a grid
search strategy. We optimized the number of weak learners and the learning rate.

2.4.4. LogitBoost

LogitBoost [34] is a popular boosting modification that can be applied to binary
classification problems. From a statistical standpoint, LogitBoost can be seen as an additive
tree regression by minimizing the logistic loss. One of the benefits of LogitBoost is that it is
relatively easy to implement, and it can often achieve good performance with relatively
little hyperparameter tuning. It is also resistant to overfitting, which makes it a good fit for
use on noisy or high-dimensional data. Hyperparameter estimation was performed using
a grid search strategy. We optimized the number of weak learners and the learning rate.

2.4.5. Neural Network

A neural network is a machine learning model inspired by the structure and function
of the human brain. It is composed of layers of interconnected nodes, or neurons, that
process and transmit information. We implemented a feedforward neural network with the
following architecture: an input layer, three fully connected hidden layers [3, 2, 4 neurons],
a softmax layer, and a classification layer. In the training process, 30% of the training dataset
were used as the validation dataset to minimize overfitting of the model. Hyperparameter
estimation was performed using a grid search strategy. We optimized the number of
neurons in the hidden layers.

2.5. Model Assessment

Test datasets were used to assess the performance of the five models. Receiver op-
erating characteristic (ROC) curves and receiver operating characteristic (ROC) curves
were used to compare the performance of the models for classifying undiagnosed dia-
betes (ap1) from that of undiagnosed diabetes and known diabetes (ap2). Ninety-five
percent confidence intervals (CIs) for the receiver operating characteristic (ROC) curve
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were estimated using bootstrap replicates (n = 1000). Furthermore, a specific threshold
(based on the maximized Youden index) was used to compare the sensitivity, specificity,
positive predictive value (PPV), and negative predictive value (NPV) to better understand
the capabilities of the models for usage in clinical practice during a prescreening procedure.

3. Results

A total of 45,431 participants were included in the analysis, and 36,162 participants
were excluded from the analysis due to missing HbA1c measurements, age criteria, or preg-
nancy. Among the included participants, 1297 had undiagnosed diabetes (the prevalence
of undiagnosed diabetes was 3.2%), 4772 had known diabetes, and 9556 had prediabetes.
The characteristics of the included participants are presented in Table 1.

Table 1. The baseline characteristics of people with prediabetes, undiagnosed diabetes, or diabetes.
Significance (p < 0.05) is indicated between undiagnosed diabetes and no diabetes (N), prediabetes
(P), and diabetes (D).

No Diabetes Prediabetes Undiagnosed
Diabetes Diabetes Significance

p < 0.05

n 29,806 9556 1297 4772

Age, years 36 (19.3) 54.2 (18.4) 57.7 (15) 61.9 (13.9) NPD

Male, % 48.1 50 52.5 50.5 N

BMI, kg/m2 26.8 (6.5) 30.1 (7.2) 33.1 (7.8) 32.4 (7.7) NPD

Height, cm 166.9 (10.1) 166.1 (10.2) 166.1 (9.9) 165.6 (10.7) N

Weight, kg 75.1 (20.6) 83.5 (22.5) 91.8 (24.2) 89.5 (24.5) NPD

Systolic BP, mmHg 117.3 (16.5) 127.5 (19) 134.1 (20.9) 131.6 (20.5) NPD

Diastolic BP, mmHg 67 (13.5) 70.4 (14.4) 72.3 (15.3) 67.7 (14.6) NPD

Smoking, % 12.6 16.5 17.3 11.7 ND

Physically active, % 36.1 18.7 10.7 8.5 NPD

Drinking alcohol,
days/yrs 12.6 (53.2) 10.9 (51.9) 9 (53.8) 10 (54) N

Family income to
poverty ratio 2.5 (1.6) 2.4 (1.6) 2.2 (1.5) 2.3 (1.5) NP

Sleep, h 7.2 (3.1) 7 (1.6) 7 (3.1) 7.4 (4.8) ND

Hispanic-Mexican
American, % 18.3 15.3 21.6 17.2 NPD

Hispanic-Other
Hispanic, % 9.4 9.9 10.4 9.9

Non-Hispanic White, % 41.9 35.5 27.4 34.3 NPD

Non-Hispanic Black, % 19 28.2 28.5 27.6 N

Table 2 shows the ROC AUCs for the classifiers along with a selected cutoff, which
included sensitivity, specificity, positive predictive value (PPV), and negative predictive
value (NPV). Figure 2 shows the ROC curves (left) and the precision-recall curves (right)
for the five classifiers.



Diabetology 2024, 5 6

Table 2. The ROC AUC (95% confidence interval) for the classifiers, along with a selected cutoff
based on the maximized Youden index, which includes sensitivity, specificity, positive predictive
value (PPV), and negative predictive value (NPV).

ROC AUC Sensitivity Specificity PPV NPV

Undiagnosed diabetes

RF 0.786 (0.765; 0.810) 0.855 0.603 0.083 0.99

AdaBoost 0.776 (0.750; 0.797) 0.742 0.674 0.087 0.984

RUSBoost 0.792 (0.767; 0.812) 0.824 0.657 0.091 0.989

LogitBoost 0.799 (0.775; 0.823) 0.871 0.615 0.086 0.991

Neural network 0.806 (0.782; 0.827) 0.848 0.628 0.087 0.99

Diabetes +
Undiagnosed diabetes

RF 0.800 (0.788; 0.815) 0.814 0.637 0.290 0.949

AdaBoost 0.787 (0.775; 0.799) 0.819 0.628 0.287 0.95

RUSBoost 0.796 (0.782; 0.809) 0.818 0.631 0.288 0.95

LogitBoost 0.802 (0.789; 0.814) 0.816 0.645 0.295 0.95

Neural network 0.800 (0.787; 0.810) 0.821 0.64 0.294 0.952
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Primary endpoint (ap1): For the classification of undiagnosed diabetes (no diabetes or
prediabetes vs. undiagnosed diabetes), the area under the ROC curve (AUC) was between
0.776 and 0.806. The PPV was between 0.083 and 0.091, the NPV was between 0.984 and 0.99,
and the sensitivity was between 0.742 and 0.871. Figure 3 shows the selected predictors for
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each model using forward selection and cross-validation. Age and ethnicity (non-Hispanic
white) were selected for all models, and the economic ratio was selected for four out of five
models.
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Secondary endpoint (ap2): For the classification of undiagnosed diabetes + known
diabetes (no diabetes or prediabetes vs. undiagnosed diabetes or known diabetes), the
receiver operating characteristic (ROC) curves were between 0.787 and 0.802. The PPV
was between 0.287 and 295; the NPV was between 0.949 and 952; and the sensitivity was
between 0.787 and 802.

4. Discussion

This study aimed to compare the performance of an ML model in classifying un-
diagnosed diabetes from known diabetes using a large heterogeneous dataset utilizing
simple and obtainable clinical information. For the classification of undiagnosed dia-
betes, the comparison did not reveal large differences in model performance among the
five models. All the included models performed well and could be utilized in a clinical
prescreening program to identify people for subsequent diabetes testing. The PPV was
approximately 8–9%, which is low but is expected for this type of prescreening. Other risk
score studies have reported PPVs between 4 and 8% [6,35]. This means that for each of the
1000 people we screened, if a sensitivity of 80% was selected, ~392 people would be eligible
for subsequent testing, and out of those people, ~32 would have undiagnosed diabetes.
Furthermore, ~8 people will not be diagnosed with diabetes. A substantial portion of
the people selected for subsequent testing who did not have undiagnosed diabetes (false
positives) were diagnosed with prediabetes. Identifying people with prediabetes could
lead to health-promoting initiatives for the group to slow or stop the progression from
prediabetes to diabetes.

The exact cutoff for such a prescreening procedure also needs to be considered in a
cost-benefit analysis, which is beyond the scope of this paper.

For the classification of undiagnosed diabetes + known diabetes, similar trends were
observed—the choice of model did not significantly change the performance. However, the
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PPV was much greater than that of undiagnosed diabetes alone. This is also expected, as
the prevalence of prediabetes at the population level is much greater.

The predictors included in this study can be categorized into three groups: demo-
graphic, clinical, and lifestyle predictors. These predictors were used to develop machine
learning models to prescreen undiagnosed diabetes patients.

Demographic predictors have been shown to be associated with diabetes incidence [36].
In our study, age and ethnicity were included as predictors in all the proposed models.
Clinical variables have been consistently associated with diabetes risk. For example, higher
BMI and waist circumference have been shown to be strongly associated with diabetes
risk, with individuals with a BMI of 30 or higher being at a greater risk of developing
diabetes. Waist circumference and systolic blood pressure were also included as predictors
in most of the models. BMI was only selected for one of the compared models; however,
studies have shown that waist circumference may be a more specific predictor of dangerous
overweight [37]. Lifestyle predictors have also been shown to be associated with diabetes
risk [36]. For example, physical activity has been shown to lower diabetes risk, while
smoking and alcohol usage have been shown to increase diabetes risk [38]. In our study,
alcohol usage and indirect measures of lifestyle, such as education level and economic
status, were included as predictors. Surprisingly, physical activity and smoking were not
included as predictors. The explanation could be that it might be difficult to capture the
discriminative information in these predictors using a questionnaire-based approach or
that the information is captured indirectly by other predictors.

4.1. Comparison to Other Related Work

Over the past few decades, several machine learning approaches and classic statistical
predictive models have been published on the topic of screening for undiagnosed diabetes.
Baan et al. [35] developed three predictive models (logistics regression) based on a sample of
participants from the Rotterdam Study (n = 1016) aged 55 to 75 years who were not known
to have diabetes. The authors reported ROC AUCs of up to 0.74. Bang et al. [36] developed
a simple scoring system (based on logistic regression) based on the Korea National Health
and Nutrition Examination Survey (KNHANES) and compared it with previous scoring
systems. Bang et al. reported ROC AUCs of up to 0.73. Moreover, Cichosz et al. [23]
suggested an extended predictive feature search strategy to model a logistic regression for
the prediction of undiagnosed diabetes. They reported an ROC AUC of 0.78.

Yu et al. [24] used a support vector machine (SVM) approach to identify undiagnosed
and known diabetes in the 1999–2004 sample of the NHANES with successful performance
(AUC = 0.83). However, Yu et al. did not predict undiagnosed diabetes separately, which
makes comparison difficult.

4.2. Strengths and Limitations

An important advantage of this research lies in our utilization of a substantial and di-
verse dataset from the NHANES. This dataset are distinctive because it comprises nationally
representative survey data that have been weighted, accurately reflecting the composition
of the entire U.S. populace. As a result, the findings are likely to have a reasonable degree of
applicability to the broader U.S. population when used in a screening process. Nevertheless,
the application of these models in different global regions necessitates careful consideration,
and it is imperative to validate their effectiveness in these populations before embracing
them on a larger scale.

The approach introduced in this research were rooted in data-driven analysis. We
carefully chose variables and refined our models to achieve optimal performance. Although
the chosen variables were all characterized as readily available or easily obtainable clinical
data, certain pieces of information hold greater clinical practicality, particularly in the
context of conducting large-scale population screenings. Should these models be considered
for practical clinical use, it becomes important to assess the significance of each variable,
with an emphasis on selecting those that offer the most effortlessly attainable information.
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A limitation of this study is the definition of undiagnosed diabetes, as it was based
on a single lab value of HbA1c above 6.5%. The American Diabetes Association (ADA)
recommends that at least two HbA1c levels be measured to fully establish a diabetes
diagnosis. Furthermore, known diabetes diagnoses rely on participant self-reports, which
are subject to misclassification bias.

Additionally, we explored five distinct, robust machine learning algorithms known
for their effective predictive capabilities in healthcare settings for comparative analysis.
Numerous alternative methods and implementations, including support vector machines,
XGBoost, and K-nearest neighbor methods, are also available. We believe that further explo-
ration and comparison of additional methods could be pertinent, particularly when dealing
with more intricate datasets containing extensive additional and complex information for
the identification of undiagnosed diabetes.

4.3. Future Directions

In a recent study, Katsimpris et al. [39] demonstrated the potential of leveraging nutri-
tional data for predicting type 2 diabetes mellitus through a logistic regression approach.
An avenue for future exploration in the development of a classification model for iden-
tifying individuals with undiagnosed diabetes involves integrating dietary information
with other pertinent factors. This strategic combination of variables aims to enhance the
predictive capabilities of the model, potentially yielding more accurate and comprehensive
insights into the identification of undiagnosed diabetes patients.

5. Conclusions

We have demonstrated that several types of classification models can accurately
classify undiagnosed diabetes from simple and clinically obtainable variables. Small
differences in performance were observed among the compared models, but no one model
outperformed the others in terms of classifying undiagnosed diabetes or prediabetes. These
results suggest that the use of machine learning for prescreening for undiagnosed diabetes
could be a useful tool in clinical practice.
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