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ABSTRACT In this article, we show that a pair of entangled qubits can be used to compute a product
privately. More precisely, two participants with a private input from a finite field can perform local operations
on a shared, Bell-like quantum state, and when these qubits are later sent to a third participant, the third
participant can determine the product of the inputs, but without learning more about the individual inputs.
We give a concrete way to realize this product computation for arbitrary finite fields of prime order.

INDEX TERMS Multiparty computation, privacy, quantum entanglement.

I. INTRODUCTION
Having access to quantum bits, or qubits, opens up newmeth-
ods that would be impossible in the classical realm. An exam-
ple of this is superdense coding [1], where two participants
sharing an entangled pair can send a single qubit to transmit
two classical bits, see e.g., [2, pp. 97–98].

In this article, we explore how entangled pairs may be
used to compute private products over finite fields. Namely,
if two participants each hold an element of a finite field, and
they wish to reveal the product of their elements to a third
party without revealing their individual inputs, then this can
in certain cases be achieved using pairs of entangled qubits.
One may argue that it is also possible to achieve this using
Shamir’s secret sharing scheme [3], [4, Ch. 3]; this is true, in
the same sense that one may similarly argue that superdense
coding can be obviated by classical transmission of two bits
using a single symbol, as in quadrature phase shift keying,
rather than using entanglement. As such, our motivation for
studying this problem is not so much the application to a
specific real-world problem, but should be seen more as an
exploration of the possibilities opened up by using quantum
information processing.
The rest of this article is organized as follows. Section II

describes our model assumptions and recalls the basic quan-
tum properties that will be used throughout. After that, Sec-
tion III provides a sketch of the problem in the case of
products over F2. This is meant to provide a better intuition
about the challenges and requirements in the general case. In
Section IV, we then define properties necessary to compute
a private product over general finite fields of prime size, and

use this to formulate a general protocol. Section V provides
an explicit construction of a private product family that can
be applied in the general protocol, and in Section VI we show
how this encoding can be realized systematically by Alice
and Bob. Finally, Section VII indicates how the developed
methods can be applied to (small) private set intersections
(PSI) and to dot products, both in the binary case. Finally,
Section VIII concludes this article and lists a few open prob-
lems for future research.

II. PRELIMINARIES
Throughout this article, we assume that p is a prime and let
Fp denote the finite field of order p.

A. MODEL ASSUMPTIONS
Keeping with cryptographic tradition, we will call the three
participants Alice, Bob, and Charlie. Alice and Bob each
hold an input a ∈ Fp and b ∈ Fp, respectively, and their goal
is for Charlie to learn ab. In addition, they need to achieve
this in such a way that the following holds.

1) Alice does not learn anything about b.
2) Bob does not learn anything about a.
3) Charlie does not learn anything about (a, b) except

what is implied by ab.

We assume only a limited number of communication chan-
nels between the participants. Namely, we assume the exis-
tence of a classical channel1 fromAlice to Bob, and quantum

1As noted by one of the reviewers, one may replace this classical channel
by shared randomness between Alice and Bob that is independent of (a, b).
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channels from Alice to Charlie and from Bob to Charlie. For
simplicity, we assume that all channels are perfectly private
and error-free. Note that if the participants do not have ac-
cess to other channels than the three above-mentioned, the
classical solution provided by Shamir’s secret sharing is no
longer possible.
Throughout, we assume participants are “honest-but-

curious.” That is, they will follow protocols as specified, but
they may try to use anything received during the protocol in
an attempt to extract information about the other participants’
inputs.

B. QUANTUM ENTANGLEMENT
A p-ary quantum bit can be described by a state inCp, andwe
will fix an orthonormal basis {|i〉}i∈Fp of Cp. Here, i does not
refer to the imaginary unit, and throughout, we will simply
use it as an index.
Now, letω ∈ C be a primitive p’th root of unity. As defined

in [5], the p-ary bit flip and phase shift operators applied to
the basis states are

X (a) :

{
C
p → C

p

|i〉 �→ |i+ a〉 and Z(b) :

{
C
p → C

p

|i〉 �→ ωbi|i〉
where a, b ∈ Fp, and images of arbitrary states are defined
by linearity of the operators.
Consider the Bell-like states given by

|ϕab〉 =
p−1∑
i=0

ωbi|i+ a〉|i〉, a, b ∈ Fp. (1)

With this definition, we have |ϕ00〉 = ∑p−1
i=0 |i〉|i〉, and

|ϕab〉 = (X (a) ⊗ Z(b))|ϕ00〉. Note, that in the literature, |ϕ±〉
and |ψ±〉 are commonly used to denote the four Bell states
in the binary case, but we use the notation in (1) as it eases
notation in our setting.
The mathematical representation of a quantum state can

be multiplied by a complex scalar of modulus 1, which is
called a global phase. The significance of this global phase
does not carry over to the physical qubit, however, as a global
phase does not influence the outcomes when measuring a
qubit [2]. For this reason, we will ignore global phase factors
throughout most of this work.

III. BINARY CASE
In order to illustrate the ideas in this work, we give a detailed
overview in the case p = 2. Here, ω = −1, and the states
in (1) are given by

|ϕ00〉 = |00〉+|11〉√
2

|ϕ01〉 = |00〉−|11〉√
2

|ϕ10〉 = |10〉+|01〉√
2

|ϕ11〉 = |10〉−|01〉√
2

(2)

where we use the notation |ii〉 = |i〉|i〉.
Assume that Alice and Bob have already prepared the Bell

state |ϕ00〉 and split the qubits between them such that Alice
holds the first qubit and Bob holds the second.

TABLE 1. Three Encodings of (a, b) for F2

TABLE 2. Resulting States of the Encodings in Table 1

Alice and Bob now do the following. If a = 1, Alice will
apply X to her qubit, and if b = 1, Bob will apply Z. The
reader may check that this maps |ϕ00〉 to |ϕab〉. If Alice and
Bob send their individual qubits to Charlie, he can measure
the received system in the Bell basis to recover |ϕab〉. The
problem with this approach, however, is that Charlie not only
learns the product ab. He also learns the individual inputs a
and b since |ϕab〉 is the output if and only if Alice has input
a and Bob has input b.
In order to fix this, Alice and Bob will choose uniformly

at random between three different encodings that all encode
(a, b) = (1, 1) to the same state |ϕ11〉 (up to a global phase
factor). That is, they choose one of the encodings in Table 1
uniformly at random. Note that in each row, the same opera-
tor is applied to the first qubit regardless of the column index.
Similarly for the second qubit in each column. This means
that Alice and Bob can perform the encoding of their own
input independently of the input of the other participant. By
translating these operators into the resulting state when ap-
plied to |ϕ00〉, we get the states in Table 2, where one should
note that—ignoring global phase factors—each of the “zero
states” |ϕ00〉, |ϕ10〉, and |ϕ01〉 correspond to inputs (0,0),
(1,0), and (0,1) with equal probability when the encodings
are chosen uniformly. The end effect is that Charlie receives
the state |ϕ11〉 if and only if a = 1 and b = 1, which is equiv-
alent to ab = 1. If (a, b) �= (1, 1), Charlie will receive |ϕ00〉,
|ϕ01〉, or |ϕ10〉 with equal probability. That is, the specific
encoding of zero received by Charlie reveals nothing about
the individual inputs of Alice and Bob.2

Actually, the encodings that we have presented in this sec-
tion do not quite match those that we propose in the general
setting. More precisely, the three encodings in Table 1 are a

2Clearly, one can ask whether a similar type of operation is possible
in a classical setting. In principle, it is, if Charlie has only access to the
product without having access to the individual contributions; nevertheless,
in a settingwith entanglement this setup occurs naturally, without having any
transmission toward Charlie, which is a genuine use of the “spooky action
at a distance.”

2100609 VOLUME 4, 2023
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subset of the encodings in the general procedure. The binary
case has some extra symmetry compared to larger fields, and
this allows a smaller family of encodings (three instead of
six).

IV. GENERAL CASE
In order to analyze products in Fp for general primes p, we
will have a closer look at the operators applied by Alice and
Bob. We will assume that Alice and Bob both use operators
on the form X (i)Z( j) where i, j ∈ Fp. More precisely, for
each input a ∈ Fp Alice will have values xAa and zAa , both in
Fp, defining the operator X (xAa )Z(z

A
a ) that she will apply to

her qubit. Note here that the superscript indicates that these
values belong to Alice, and the subscript denotes the specific
input. For instance, if p = 2 Alice’s operators will be defined
by values xA0 , z

A
0 corresponding to a = 0 and xA1 , z

A
1 corre-

sponding to a = 1. In a similar way, we can define values
xBb and zBb for Bob.
With this notation in place, the input (a, b) will result in

the quantum state(
X (xAa )Z(z

A
a ) ⊗ X (xBb )Z(z

B
b )

) |ϕ00〉. (3)

There are, however, many different choices of
xAa , z

A
a , x

B
b , and z

B
b that lead to the same state. To handle

this, we will make extensive use of the equivalence given in
the following lemma.
Lemma 1: For any xAa , z

A
a , x

B
b , z

B
b ∈ Fp and any (i, j) ∈ F

2
p,

we have(
X (xAa )Z(z

A
a ) ⊗ X (xBb )Z(z

B
b )

) |ϕi j〉
= (

X (xAa − xBb )Z(z
A
a + zBb ) ⊗ I

) |ϕi j〉
up to a global phase.
Proof: Direct calculations reveal that(
X (xAa )Z(z

A
a ) ⊗ X (xBb )Z(z

B
b )

) |ϕi j〉

= ωiz
A
a

p−1∑
k=0

ωk( j+z
A
a+zBb )|k + i+ xAa 〉|k + xBb 〉

and(
X (xAa − xBb )Z(z

A
a + zBb ) ⊗ I

) |ϕi j〉

= ωi(z
A
a+zBb )

p−1∑
k=0

ωk( j+z
A
a+zBb )|k + i+ xAa − xBb 〉|k〉

= ω(i+xBb )(zAa+zBb )+zBb j
p−1∑
k=0

ωk( j+z
A
a+zBb )|k+i+xAa 〉|k+xBb 〉

where the last equality follows from appropriate substitution
of the summing variable. �

Lemma 1 not only gives us an equivalence between dif-
ferent operators, it also allows us to describe the Bell states
using elements of F2

p. Namely, the state (3) can be uniquely
represented by the pair (xAa − xBb , z

A
a + zBb ) ∈ F

2
p. We use this

to describe the different encodings as was done in Section III.

Our strategy is to use this insight to describe “multiplica-
tion tables,” i.e., to define p× p tables such that the Bell-like
state in entry (i, j) represents the product i j. Notationally,
such a table corresponds to a bijection, and we will refer to
this as an encoding.
Definition 1: An encoding is a bijection ε : F2

p → F
2
p. The

set of all encodings is denoted by E .
Not all encodings match the properties needed to compute

products, however, so we derive necessary and sufficient
conditions for an encoding to be valid. First of all, the en-
coded Bell state must correspond to the correct product. In
other words, if Alice and Bob have inputs (a, b), and this is
encoded to a Bell-state |ϕi j〉, then it must be the case that
Charlie recognizes this as representing the product ab. That
is, ab = i j (where computations are done in Fp).
A second condition comes from the wayAlice and Bob ap-

ply the encodings to their qubits.More precisely, an encoding
can only be used if there exist local operations represented by
{(xAi , zAi )}i∈Fp and {(xBi , zBi )}i∈Fp that realize said encoding. It
turns out that this is equivalent to ε ∈ E satisfying

ε(i, j) + ε(i′, j′) = ε(i, j′) + ε(i′, j)

for every i, i′, j, j′. The analysis leading to this is somewhat
involved, so we give it in Appendix A.

Summarizing this in a single definition, we get the
encodings that we need. Here, we use

π :

{
F
2
p → Fp

(i, j) �→ i j
(4)

as a shorthand notation for products, which will make the
exposition less cumbersome.
Definition 2: An encoding ε ∈ E is called product-

compatible if it satisfies the following.

1) For every i, j ∈ Fp, we have π (ε(i, j)) = i j.
2) For every i, j, i′, j′ ∈ Fp it holds that

ε(i, j) + ε(i′, j′) = ε(i, j′) + ε(i′, j).

Definition 3: A family of encodings E ⊆ E is called a
private product family, if each ε ∈ E satisfies the following.

1) ε is product-compatible.
2) For every (a, b) ∈ F

2
p, there exists c ∈ Z

+ such that∣∣{ε ∈ E | ε(i, j) = (a, b)}∣∣ = c

for every (i, j) ∈ F
2
p satisfying i j = ab.

A few comments about the intuition behind Definition 3
are in order. The first condition is related to correctness,
meaning that the state that Charlie receives will actually
correspond to the correct product. The second requirement
ensures privacy. It guarantees that when Charlie receives a
state |ϕab〉, then it will have come from any input pair (i, j)
satisfying i j = abwith equal probability as long as Alice and
Bob choose ε ∈ E uniformly at random.
The proposed method for computing private products

using entangled pairs can be found in Fig. 1.

VOLUME 4, 2023 2100609
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FIGURE 1. Protocol for entanglement-assisted private products.

V. CONSTRUCTING A PRIVATE PRODUCT FAMILY
In the following, we describe an explicit way to produce a
private product family over arbitrary finite fields. In greater
detail, we focus on a subset of E and obtain the private prod-
uct family as orbits under group actions defined later. Our
starting point will be two “canonical” product-compatible
encodings given by ε0(i, j) = (i, j) and εT0 (i, j) = ( j, i). In-
tuitively, the idea is that these are “good” encodings in the
sense that they posses the properties we want. By choosing
the group actions appropriately (i.e., in a way that preserves
the desired properties) we obtain additional “good” encod-
ings by considering the orbits of ε0 and εT0 .

In our proofs, we will rely on an additional property of ε0
and εT0 that is also preserved by the group action. Namely,
we define E1 ⊆ E by

E1 =
⎧⎨
⎩ε

∣∣∣∣∣∣
ε is product-compatible,
∀(i, j) ∈ F

2
p ∀δ ∈ Fp :

ε(i+δ, 0) − ε(i, 0) = ε( j+δ, 0) − ε( j, 0)

⎫⎬
⎭ .
(5)

Proposition 1: We have ε0 ∈ E1 and εT0 ∈ E1.
Proof: From the definition of ε0 and εT0 , it is clear that

they are product-compatible. In addition, we see that for any
(i, j) ∈ F

2
p and δ ∈ Fp, ε0 satisfies

ε0(i+δ, 0)−ε0(i, 0) = (i+δ, 0) − (i, 0)

= (i+δ, 0)−(i, 0)+(( j−i, 0)−( j−i, 0))
= ( j+δ, 0) − ( j, 0)

= ε0( j+δ, 0) − ε0( j, 0)

as required. The proof for εT0 is similar. �
Now, fix a primitive element α of Fp (i.e. α has multiplica-

tive order p− 1), and consider the additive group Zp−1 =
Z/(p− 1)Z. For each n ∈ Zp−1 and each β ∈ Fp, define a
map ϕn,β : E1 → E1 given by

ϕn,β (ε)(i, j) =
{
ε(αni+ β, 0) j = 0
ε(αni, α−n j) j �= 0.

Proposition 2: For every n ∈ Zp−1 and β ∈ Fp, the map
ϕn,β : E1 → E1 is well-defined.
Proof: Let n ∈ Zp−1, and assume ε ∈ E1. We first show

that ϕn,β (ε) is product-compatible. Indeed, for j = 0 it is
easy to check that π (ϕn,β (ε)(i, j)) = 0 = i j, and for j �= 0

we have

π
(
ϕn,β (ε)(i, j)

) = π
(
ε(αni, α−n j)

) = αniα−n j = i j.

To see that condition 2 in Definition 2 is satisfied, notice that
for j �= 0, j′ �= 0, we have

ϕn,β (ε)(i, j) + ϕn,β (ε)(i
′, j′)

= ε(αni, α−n j) + ε(αni′, α−n j′)

= ε(αni, α−n j′) + ε(αni′, α−n j)

= ϕn,β (ε)(i, j
′) + ϕn,β (ε)(i

′, j)

where the second equality stems from ε being product com-
patible. Otherwise, we can by symmetry assume j = 0 and
j′ �= 0, which implies

ϕn,β (ε)(i, j) + ϕn,β (ε)(i
′, j′)

= ε(αni+ β, 0) + ε(αni′, α−n j′)

= ε(αni+ β, α−n j′) + ε(αni′, 0)

= ε(αni, α−n j′) + ε(αni′ + β, 0)

= ϕn,β (ε)(i, j
′) + ϕn,β (ε)(i

′, j)

where the first and second conditions in (5) give the second
and third equalities, respectively.
For the remaining condition in (5), observe that for every

(i, j) ∈ F
2
p, and every δ ∈ Fp, we have

ϕn,β (ε)(i+ δ, 0) − ϕn,β (ε)(i, 0)

= ε
(
(αni+ β ) + αnδ, 0

) − ε(αni+ β, 0)

= ε
(
(αn j + β ) + αnδ, 0

) − ε(αn j + β, 0)

= ϕn,β (ε)( j + δ, 0) − ϕn,β (ε)( j, 0)

where the second equality once again stems from ε ∈ E1.
Thus, ϕn,β (ε) ∈ E1, and ϕn,β is well-defined. �
Consider the additive group Zp−1 and Fp as a group with

addition as well. By defining the composition ◦ : Zp−1 ×
Fp → Zp−1 × Fp, given by

(n, β ) ◦ (n′, β ′) = (n+ n′, αn
′
β + β ′) (6)

we obtain the semidirect product G1 = Zp−1 � Fp. In more
detail, the map β �→ αn

′
β is an automorphism of Fp for

any n′ ∈ Zp−1, and the construction above yields the outer
semidirect product as described in [6, p. 76].
Proposition 3: Let G1 = Zp−1 � Fp with composition as

in (6). The map given by{
G1 × E1 → E1

((n, β ), ε) �→ ϕn,β (ε)

defines a group action of G1 on E1.
Proof: By Proposition 2, the map is well-defined. The

following observations imply that it defines a group action.
First, for every ε ∈ E1, we have ϕ0,0(ε) = ε. Second, we see

2100609 VOLUME 4, 2023
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that

ϕn,β (ϕn′,β ′ (ε))(i, 0) = ϕn′,β ′ (ε)(αni+ β, 0)

= ε(αn+n
′
i+ αn

′
β + β ′, 0)

= ϕ(n,β )◦(n′,β ′ )(ε)

and

ϕn,β (ϕn′,β ′ (ε))(i, j) = ϕn′,β ′ (ε)(αni, α−n j)

= ε(αn+n
′
i, α−(n+n′ ) j)

= ϕ(n,β )◦(n′,β ′ )(ε)(i, j)

for j �= 0. �
Having established that G1 does indeed act on E1, we

verify that ε0 and εT0 are in different orbits and hence give
rise to different encodings.
Proposition 4: The orbits G1ε0 and G1ε

T
0 are disjoint. In

addition, they satisfy |G1ε0| = |G1ε
T
0 | = |G1|.

Proof: Note, that for any (n, β ) ∈ G1, we have
ϕn,β (ε0)(0, 1) = (0, α−n), and similarly for any (n′, β ′) ∈
G1 it holds that ϕn′,β ′ (εT0 )(0, 1) = (α−n′

, 0). Hence, the two
orbits are disjoint.
We show the cardinality claim for G1ε0 only, as G1ε

T
0 is

similar. Assume that (n, β ) and (n′, β ′) are two elements of
G1 that map ε0 to the same element of E1. In particular, this
implies for j �= 0 that ϕn,β (ε0)(i, j) = ϕn′,β ′ (ε0)(i, j), which

implies α−n j = α−n′
j. Since j is assumed to be a unit, we

conclude n = n′. Applying similar arguments to indices (i, 0)
gives αni+ β = αni+ β ′, implying β = β ′. Thus, G1 acts
injectively on E1. �

The second group action that we are going to use is very
similar to G1 acting on E1. In fact, the group will be the
same, but the action is different. Hence, we will denote the
group by G2 in connection to this new group action to ease
the notation. This group G2 will act on a second subset of E
given by

E2 =
⎧⎨
⎩ε

∣∣∣∣∣∣
ε is product-compatible,
∀(i, j) ∈ F

2
p ∀δ ∈ Fp :

ε(0, i+δ) − ε(0, i) = ε(0, j+δ) − ε(0, j)

⎫⎬
⎭ .

Each element (n, β ) ∈ G2 = Zp−1 � Fp gives rise to a map
ψnβ : E2 → E2 given by

ψn,β (ε)(i, j) =
{
ε(0, α−n j + β ) i = 0
ε(αni, α−n j) i �= 0.

One can then prove that this is indeed a group action as was
done in Propositions 2 and 3 forG1, and analyze the orbits as
in Proposition 4. For G2 we simply state the results and omit
the proofs, as they are completely analogous to the previous
ones for G1.
Proposition 5: Let G2 = Zp−1 � Fp with composition as

in (6). The map given by{
G2 × E2 → E2

((n, β ), ε) �→ ψn,β (ε)

defines a group action of G2 on E2.
Proposition 6: The orbits G2ε0 and G2ε

T
0 are disjoint. In

addition, they satisfy |G2ε0| = |G2ε
T
0 | = |G2|.

Now, define the sets

E = H1 ∪ H2, Hi = Giε0 ∪ Giε
T
0 (7)

which are all subsets of E . The set E is, we claim, a pri-
vate product family as desired, and the following lemma and
proposition prove this claim.
Lemma 2: Writing E as a disjoint union

E = (H1 \ H2) � (H2 \ H1) � (H1 ∩ H2)

we have

H1 \ H2 = {ϕn,β (ε) | ε ∈ {ε0, εT0 }, (n, β ) ∈ G1, β �= 0}
H2 \ H1 = {ψn,β (ε) | ε ∈ {ε0, εT0 }, (n, β ) ∈ G2, β �= 0}

and

H1 ∩ H2 = {ϕn,0(ε) | ε ∈ {ε0, εT0 }, (n, 0) ∈ G1}
= {ψn,0(ε) | ε ∈ {ε0, εT0 }, (n, 0) ∈ G2}.

In addition, |H1 \ H2| = |H2 \ H1| = 2(p− 1)2 and |H1 ∩
H2| = 2(p− 1).
Proof: It is clear that the union is disjoint by definition.
Assuming that h ∈ H1 ∩ H2, theremust exist n, n′ ∈ Zp−1,

β, β ′ ∈ Fp, and ε, ε′ ∈ {ε0, εT0 } such that ϕn,β (ε) = h =
ψn′,β ′ (ε′). Observe first that

ϕn,β (ε)(0, 0) = ε(β, 0)

ψn′,β ′ (ε′)(0, 0) = ε′(0, β ′).

So for ϕn,β (ε) = ψn′,β ′ (ε′) to hold, it must be the case that
either β = β ′ = 0, or β = β ′ �= 0 and ε �= ε′. The latter case
is impossible, however, as

ϕn,β (ε)(0, 1) = ε(0, αn)

ψn′,β (ε
′)(0, 1) = ε′(0, αn

′ + β )

and regardless of the choices of ε �= ε′, this implies αn =
0, which is a contradiction. Hence, β = β ′ = 0. For these
mappings, observe that they satisfy

ϕn,0(ε)(i, j) = ε(αni, α−n j) = ψn,0(ε)(i, j)

regardless of the choice of ε and the values of i and j, so they
constitute the elements of H1 ∩ H2 as claimed.

What remains is to prove that |H1 ∩ H2| = 2(p− 1), as
the cardinalities of H1 \ H2 and H2 \ H1 then follow from
Propositions 4 and 6, respectively. From Proposition 4, we
know that G1 acts injectively on E1, meaning that each of
the ϕn,0(ε) appearing in the statement of the Lemma are
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distinct. The p− 1 choices for n ∈ Zp−1 and the 2 choices for
ε ∈ {ε0, εT0 } then give |H1 ∩ H2| = 2(p− 1) as claimed. �
Proposition 7: The set E defined in (7) is a private product

family.
Proof: Since all the orbits making upE consist of product-

compatible encodings, we only need to prove item 2 in Defi-
nition 3. Fix (a, b), (i, j) ∈ F

2
p such that ab = i j, and assume

first that ab �= 0. Consider ϕn,β (ε0) ∈ (H1 \ H2) as given in
Lemma 2. If ϕn,β (ε0)(i, j) = (a, b), then ε0(αni, α−n j) =
(a, b), which again implies αn = ai−1. Here, we use that i
is a nonzero element of Fp. Note also that the assumption
ab = i j means that a = αni automatically implies b = α−n j
as needed. Since α is primitive, there is exactly one n that sat-
isfies αn = ai−1, and β ∈ F

∗
p can be chosen freely. Thus, this

gives p− 1 encodings ε ∈ H1 \ H2 such that ε(i, j) = (a, b),
and similar arguments applied to εT0 yields another p− 1
encodings. Completely analogously, there are 2(p− 1) such
encodings in H2 \ H1. In the case of H1 ∩ H2, there is only
a single choice for α as above, and in addition β = 0 in
this case. Hence, one would find 2 encodings in H1 ∩ H2. In
total, this amounts to 4(p− 1) + 2 encodings regardless of
the choice of (i, j).
Moving on, assume ab = 0 with a �= 0 – the case b �= 0 is

analogous. Considering (i, 0) ∈ Fp with i �= 0, the possible
encodings are

(a, 0) = ϕn,β (ε0)(i, 0) = (αni+ β, 0)

(a, 0) = ψn,β (ε0)(i, 0) = (αni, 0).

For the first equality, each choice of n ∈ Zp−1 gives a unique
choice of β. In the second, there is one possible n, but β ∈ Fp

can be chosen freely. Note, however, that there is an encoding
ϕn,β (ε0) = ψn,β (ε0) (as shown in Lemma 2) that is counted
twice in this way. Hence, the total number of encodings ε ∈
E satisfying ε(i, 0) = (a, 0) is (p− 1 + p) − 1 = 2(p− 1).
The same strategy can be used to show that there are also
2(p− 1) encodings such that ε(0, j) = (a, 0) by considering
ϕn,β (εT0 ) andψnβ (ε

T
0 ). Thus, regardless of the choice of (i, j)

with i j = ab = 0, there are exactly 2(p− 1) encodings ε ∈
E satisfying ε(i, j) = (a, b).

Finally, consider (a, b) = (0, 0). The candidate encodings
if (i, j) = (0, 0) are

(0, 0) = ϕn,β (ε0)(0, 0) = (β, 0)

(0, 0) = ϕn,β (ε
T
0 )(0, 0) = (0, β )

(0, 0) = ψn,β (ε0)(0, 0) = (0, β )

(0, 0) = ψn,β (ε
T
0 )(0, 0) = (β, 0).

Observe that β = 0 in any case, so ϕn,β (ε0) = ψn,β (ε0) and
ϕn,β (εT0 ) = ψn,β (εT0 ). For each, any n is possible, giving
2(p− 1) encodings. For (i, j) = (i, 0) with i �= 0, we use a
similar strategy and consider

(0, 0) = ϕn,β (ε0)(i, 0) = (αni+ β, 0)

(0, 0) = ϕn,β (ε
T
0 )(i, 0) = (0, αni+ β ).

For each n ∈ Zp−1 there is a unique choice of β, and all of
these encodings are distinct by Proposition 4. Thus, we have
2(p− 1) encodings like previously. If (i, j) = (0, j), similar
arguments can be applied to ψn,β (ε0) and ψn,β (εT0 ). �

VI. SYSTEMATIC CHOICES
The analysis in Section IV provides a way to permute the
Bell states similarly to what was done in Section III. But by
considering these encodings carefully, it also gives us a sys-
tematic way to choose xAa , z

A
a , x

B
b , z

B
b such that the operators

applied by Alice and Bob correspond to using a specific en-
coding from E. Namely, to perform the encoding according
to ϕn,β (ε0) Alice will set xAa = αna and zAa = 0. Bob will use
zBb = α−nb and

xBb =
{−β b = 0
0 b �= 0.

Using Lemma 1, this implies that Alice and Bob will end up
in state(

X (αna) ⊗ X (−β )) |ϕ00〉 = (
X (αna+ β ) ⊗ I

) |ϕ00〉
if b = 0, and(
X (αna) ⊗ Z(α−nb)

) |ϕ00〉 = (
X (αna)Z(α−nb) ⊗ I

) |ϕ00〉
otherwise. In any case, this corresponds exactly to the
encoding ϕn,β (ε0), as

ϕn,β (ε0)(a, b) =
{
(αna+ β, 0) b = 0
(αna, α−nb) b �= 0.

Similar considerations can be done for the remaining en-
codings in E, leading to the systematic choices presented in
Table 3.
We note that when applying this private product family in

Fig. 1, one way to sample ε ∈ E uniformly is to first sample
a trit T ∈ {1, 2, 3} with probabilities Pr[T = 1] = Pr[T =
2] = (p− 1)/(2p− 1) and Pr[T = 3] = 1/(2p− 1). Each
outcome then corresponds to one of the cases in Lemma 2
with probabilities matching the proportion of ε contained in
each case. After that, Alice can simply sample (n, β ) accord-
ing to the requirements in the case determined by T .
To illustrate the use of the protocol in Fig. 1, we provide

two examples.
Example 1: Let p = 5, α = 2, and assume that Alice and

Bob have inputs a = 2 and b = 4, respectively. Alice sam-
ples an encoding ε from E uniformly at random, and for
concreteness we use ε = ψ3,2(ε0) in this example. She sends
this outcome to Bob.
Following the systematic method in Table 3, Alice now

applies the operator X (23 · 2)Z(0) = X (1) to her qubit, and
Bob applies X (0)Z(2−3 · 4) = Z(3) to his. The overall state
of the system is now

(X (1) ⊗ Z(3)) |ϕ00〉 = |ϕ13〉
where we again omit the overall phase. Thus, when they each
send their qubit to Charlie, the state |ϕ13〉 reveals that the
product is 1 · 3 = 3, which is consistent with ab = 2 · 4 = 3.
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TABLE 3. Systematic Choices for Parameters xA
a , zA

a , xB
b , zB

b When Using the Private Product Family E Defined in (7)

Note also, that ψ3,2(ε0)(a, b) = (23a, 2−3b) = (1, 3) which
is in agreement with the operators applied by Alice and Bob
since X (1)Z(3) ⊗ I and X (1) ⊗ Z(3) are equivalent w.r.t. the
Bell-like states according to Lemma 1.
Example 2: Consider the same situation as in Example 1,

but with a = 0. Assuming that the same encoding, ψ3,2(ε0),
is used, Alice will instead apply X (23 · 0)Z(2) = Z(2), while
Bob applies Z(3) as before. The overall state is then

(Z(2) ⊗ Z(3)) |ϕ00〉 = (I ⊗ I) |ϕ00〉 = |ϕ00〉
and Charlie infers the product 0 · 0 = 0 as expected.
Again, one may note that ψ3,2(ε0)(0, 4) = (0, 2−3b+ 2) =
(0, 0), describing the same state |ϕ00〉 that Alice and Bob
constructed above.

VII. EXTENSION TO DOT PRODUCTS
In the binary case, the protocol in Fig. 1 can be easily ex-
tended to compute a PSI or a private dot product. Extending
it to PSI is the easiest, as each possible set element ei receives
an index i, and Alice and Bob then set ai = 1 and bi = 1,
respectively, if ei is contained in their individual sets. Apply-
ing the protocol in a component-wise fashion then reveals
exactly the set intersection to Charlie. Note, however, that
this is not a scalable approach, as the required number of
products is given by the size of the set domain. Thus, this
approach is only feasible for smaller examples and more
advanced techniques must be used in general, see e.g., [7],
[8], [9], [10].

Altering this to a private dot product only requires Alice
to sample a uniformly random permutation of the indices,
inform Bob of the outcome, and then have them both apply
this permutation to the ordering of the Bell states before
sending them to Charlie. In this way, Charlie only learns the
number of indices i such that ai = 1 and bi = 1. But this is
exactly the same as the dot product.

VIII. CONCLUSION AND OPEN PROBLEMS
In this article, we showed that private products over finite
fields can be computed by sacrificing a pair of entangled
qubits. Moreover, the set defined in (7) provides an explicit
description of encodings that allow this computation to hap-
pen over fields Fp for arbitrary choice of prime p.

The idea presented here could be extended in several ways.
First, one could analyze if a similar approach is possible for

general finite fields, Fq with q = pr a power of a prime. An-
other direction is to consider more than two inputting parties,
thus aiming to compute the product of n inputs while still
giving the output to a participants with no input (like Charlie
in the current article).

APPENDIX A
CONDITION FOR PRODUCT COMPATIBILITY
Let ε ∈ E be an encoding, and let ε(i, j) = (αi j, βi j ), mean-
ing that we fix αi j and βi j and want to find (xAi , z

A
i ) and

(xBj , z
B
j ). In order for Alice andBob to arrive at this state using

local operations, it must by Lemma 1 be the case that their
(xAi , z

A
i ) and (xBj , z

B
j ) are solutions to the linear system{

xAi − xBj = αi j

zAi + zBj = βi j.
(8)

One would find such a system for every possible pair (i, j).
The xAa , z

A
a , x

B
b , and z

B
b must be solutions to all of these sys-

tems simultaneously, meaning that we obtain 2p2 equations
in 4p unknowns. One may note, however, that the x-part can
be solved separately from the z-part, which instead gives two
systems of p2 equations in 2p unknowns. Considering the
system concerning the z’s, it can be represented in matrix-
form as given in (10), where the horizontal lines separate
p× 2p-matrices.
The system describing the x’s is similar, but with the

p last columns of the coefficient matrix multiplied by p-1
[caused by the change of sign in (8)]. Rather than working
with this system as the linear combination of p2-dimensional
column vectors, we will consider equivalent p× p-matrices.
Namely, we define for each i ∈ {0, 1, . . . , p− 1} the p× p
matrices Ri and Ci with entries

(Ri)st =
{
1 s ≡ i (mod p)
0 otherwise

and

(Ci)st =
{
1 t ≡ i (mod p)
0 otherwise,

where row and column indexing start from 0. With this
definition, the system in (10) can be represented as

p−1∑
i=0

zAi Ri +
p−1∑
i=0

zBi Ci = Mβ (9)
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0 1 0 · · · 0
1 0 0 · · · 0 0 0 1 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
1 0 0 · · · 0 0 0 0 · · · 1

0 1 0 · · · 0 0 1 0 · · · 0
0 1 0 · · · 0 0 0 1 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
0 1 0 · · · 0 0 0 0 · · · 1
...

...
...

. . .
...

...
...

...
. . .

...

0 0 0 · · · 0 1 1 0 · · · 0
0 0 0 · · · 0 1 0 1 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 · · · 0 1 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zA0
zA1
...

zAp−1

zB0
zB1
...

zBp−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β00
β01
...

β0(p−1)

β10

β11
...

β1(p−1)
...

β(p−1)0
β(p−1)1

...
β(p−1)(p−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

whereMβ has entries (Mβ )i j = βi j. Using this representation
will simplify our arguments below, but before stating the
result, we illustrate the notation in an example.
Example 3: If p = 3, the system in (10), shown at the top

of this page, is⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0

1 0 0 0 1 0

1 0 0 0 0 1

0 1 0 1 0 0

0 1 0 0 1 0

0 1 0 0 0 1

0 0 1 1 0 0

0 0 1 0 1 0

0 0 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zA0
zA1
zA2
zB0
zB1
zB2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β00
β01
β02
β10
β11
β12
β20
β21
β22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In addition, columns 0 and 4 in the coefficient matrix corre-
spond exactly to the 3 × 3-matrices

R0 =
⎡
⎣1 1 1
0 0 0
0 0 0

⎤
⎦ C1 =

⎡
⎣0 1 0
0 1 0
0 1 0

⎤
⎦

when ordering the entries in a row-wise fashion.
Definition 4: Let M be a p× p-matrix over Fp. We say

thatM has propertyP if for every (i, j) ∈ Fp and (i′, j′) ∈ Fp

it holds that

mi j + mi′ j′ = mi j′ + mi′ j

where computations are done in Fp.
Proposition 8: Let Mβ be a p× p-matrix over Fp.

Then, (9) has a solution if and only if Mβ has property P
as defined in Definition 4.
Proof: Note first that if two matrices A and B satisfy P ,

thenA+ B satisfiesP as well. In addition, it is easily checked
that Ri and Ci satisfy P for every i ∈ {0, 1, . . . , p− 1}. This
shows the “only if” part.

For the other direction, note that the number of p× p-
matrices satisfying P is p2p−1. Namely, choosing the entries
in the first row and column fixes all other entries. We show
that this is exactly the number of matrices in the span of the
Ri andCi on the left-hand side of (9). The result then follows
by the first part of the proof.
We claim that B = {Ri}p−1

i=0 ∪ {Ci}p−1
i=1 is a basis for

Span({Ri}p−1
i=0 ∪ {Ci}p−1

i=0 ). To see this, note that all elements

of {Ci}p−1
i=1 has only zeros in column 0. Thus, the equation

p−1∑
i=0

siRi +
p−1∑
i=1

tiCi = Op×p

where Op×p denotes the p× p-dimensional zero matrix, im-
plies that si = 0 for all i, and hence also ti = 0 for all i. As
such, B is linearly independent, and

C0 =
p−1∑
i=0

Ri −
p−1∑
i=1

Ci

shows that SpanB = Span({Ri}p−1
i=0 ∪ {Ci}p−1

i=0 ), meaning that
B is a basis. Thus, there are p2p−1 matrices in the span of
{Ri}p−1

i=0 ∪ {Ci}p−1
i=0 , concluding the proof. �

Remark 1: The same result holds for the system describ-
ing the x-values. In particular, the only difference is a scalar
on the Ci, but this does not change their span.
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