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Abstract

Introduction/Aims: The axon-reflex flare response is a reliable method for functional

assessment of small fibers in diabetic peripheral neuropathy (DPN), but broad adop-

tion is limited by the time requirement. The aims of this study were to (1) assess diag-

nostic performance and optimize time required for assessing the histamine-induced

flare response and (2) associate with established parameters.

Methods: A total of 60 participants with type 1 diabetes with (n = 33) or without

(n = 27) DPN participated. The participants underwent quantitative sensory testing

(QST), corneal confocal microscopy (CCM), and flare intensity and area size assess-

ments by laser-Doppler imaging (FLPI) following an epidermal skin-prick application

of histamine. The flare parameters were evaluated each minute for 15 min, and the

diagnostic performance compared to QST and CCM were assessed using area under

the curve (AUC). Minimum time-requirements until differentiation and to achieve

results comparable with a full examination were assessed.

Results: Flare area size had better diagnostic performance compared with CCM (AUC

0.88 vs. 0.77, p < 0.01) and QST (AUC 0.91 vs. 0.81, p = 0.02) than mean flare intensity,

and could distinguish people with and without DPN after 4 min compared to after 6 min

(both p < 0.01). Flare area size achieved a diagnostic performance comparable to a full

examination after 6 and 7 min (CCM and QST respectively, p > 0.05), while mean flare

intensity achieved it after 5 and 8 min (CCM and QST respectively, p > 0.05).

Discussion: The flare area size can be evaluated 6–7 min after histamine-application,

which increases diagnostic performance compared to mean flare intensity.
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1 | INTRODUCTION

Early and adequate assessment of small nerve fibers is particularly

important for early detection of DPN.1 However, the most commonly

used methods (skin biopsies and corneal confocal microscopy [CCM])

only assess the extent of morphological nerve fiber damage without

providing any information on their remaining function.2

Several methods for assessment of small nerve fiber function are

currently available including (but not limited to) laser- or heat contact

evoked potentials, electricity- or laser-evoked cutaneous silent

periods, microneurography, electrochemical sweat conductance or

assessment of the axon-reflex flare response.3–5

The latter is a method to evaluate small nerve fiber function

through a provoked flare response assessed using either laser-Doppler

imaging flare (LDIFLARE) or full-field laser speckle perfusion imaging

(FLPI) following approximately 30 min of local heating.6,7 The tech-

nique provides a non-invasive assessment of C-fiber function and

show strong correlations with structural measures like CCM and intra-

epidermal nerve fiber density (IENFD), but a wide adaptation of the

technique is limited by complexity and time requirement.8,9

We recently reported that a simple epidermal skin-prick application

of histamine could reliably induce an axon-reflex flare response on the

foot in people with and without type 1 diabetes mellitus (T1DM) and

neuropathic complications.10 The method utilizes the fact that an activa-

tion of histaminergic C-fibers causes a spreading vasodilation by a neu-

rogenic release of peptides, which is known as a “flare response.”11,12

Our method reduced the examination time and complexity of the exami-

nation but still required 15 min for evaluation. In our initial proof-

of-concept study, we found a difference between groups of people with

T1DM with and without DPN and theorized that the groups could be

distinguished at an earlier point during the examination. Also, we previ-

ously only evaluated the intensity of the flare response without asses-

sing the flare area size, which is important for a direct comparison to

established methods.7 Therefore, the present study aimed to (1) compare

the FLPI-assessed, quantitative measures of mean flare intensity with a

measurement of flare area size, (2) evaluate how long each method

needs to distinguish people with T1DM and established DPN from peo-

ple with T1DM without DPN, and (3) evaluate the diagnostic perfor-

mance of the two methods compared to established measures (CCM

and quantitative sensory testing [QST]).

2 | METHODS

2.1 | Study design and participants

The present study was conducted at Steno Diabetes Center North

Denmark, Aalborg University Hospital, Denmark, between August

2019 and February 2022. The cohort used for the study was derived

from the “Methods of Early Detection and grading Of diabetic Neu-

ropathy (MEDON)”-cohort, which is described in detail else-

where.10,13–17 The participants with T1DM were divided into those

with or without DPN. The presence of DPN was defined as per the

Toronto consensus for definite neuropathy.18 Causes of neuropathy

other than DPN were excluded from the cohort. The exclusion criteria

included vitamin deficiencies, hematologic or immune diseases, thy-

roid, or parathyroid disease, chronic kidney disease, previous alcohol

or drug abuse, previous chemotherapy, severe or chronic viral infec-

tion, severe skin disease, and active cancer. The study received

approval from the local ethics committee (N-20190003) and was pro-

spectively registered on clinicaltrials.gov (NCT04078516). All partici-

pants gave informed consent prior to participation.

2.2 | Neuropathy assessment

Participants underwent a clinical examination including a neurological

evaluation according to the Michigan Neuropathy Screening Instru-

ment (MNSI).19 Conventional nerve conduction studies were per-

formed following usual clinical standards using superficial recordings

as previously described and reported with evaluation of the median,

ulnar, radial, tibial, peroneal, and sural nerves.10,13 QST was performed

according to the full protocol provided by the German Research Net-

work on Neuropathic Pain as previously described and reported.10,20

In-vivo CCM was performed in all eligible participants (people

with active eye infections, corneal disease or abrasions, a history of

bilateral refraction surgery or anterior segment trauma were excluded)

using a Heidelberg Retinal Tomograph III Rostock Cornea Module

(Heidelberg Engineering GmbH, Heidelberg, Germany) following

established guidelines. A volume scan of the corneal apex was per-

formed, and 100 images with a resolution of 400 � 400 μm were

obtained from each participant. Subsequent image selection was per-

formed by two different blinded authors (J.R. and S.S.C.), who each

selected three to four representative images based on criteria includ-

ing good image contrast between background and nerves, limited

motion artifacts, limited pressure lines, limited image overlap, en-face

alignment, and proper focus.21 Manual morphometric analysis was

conducted using CCMetrics (M.A. Dabbah, Imaging Science and Bio-

medical Engineering, University of Manchester, Manchester, U.K.).

Corneal nerve fiber length (CNFL), corneal nerve branch density, and

corneal nerve fiber density were obtained following previously estab-

lished definitions.22,23 Cutoffs for abnormal values were determined

as the lower fifth quantile from the published normative dataset.24

Contact lenses were removed prior to examination if present.

The axon-reflex flare response was evoked by an epidermal appli-

cation of one drop of 1% weight by volume histamine (Lofarma,

Milano, Italy) applied in an area approximately 2–3 cm proximal to the

second toe on the dorsum of the right foot. The application was fol-

lowed by the application of a simple, handheld, skin-prick lancet

(Aalborg University, Aalborg, Denmark) with a standardized 85 g pres-

sure to allow the histamine to penetrate the skin.25 Images of the der-

mal blood flow were captured using an FLPI-device (Moor

Instruments, Axminster, UK) and analyzed using appropriate software

(moorFLPI-2 Review V5.0, Moor Instruments, Axminster, UK). Images

were obtained at baseline (before application) and each minute for

15 min (after application). All images were subsequently screened
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for poor quality (see supplementary material for examples) by two

individual authors (J.R. and S.S.C.). The process resulted in 26 images

being excluded (2%) with full agreement between the two raters. All

remaining images were analyzed to obtain mean flare intensity and

flare area size. Mean flare intensity was evaluated in a predefined, cir-

cular, region of interest (ROI) with an area of 450 mm2. The parameter

was evaluated as a change from baseline by subtracting the baseline

image (image taken before the application of histamine) from each

subsequent image. Flare area size was determined using the volumet-

ric function in moorFLPI-2 Review V5.0 (Moor Instruments,

Axminster, UK). Mean flare intensity was expressed in perfusion units

(PU), while flare area size was expressed in mm2.26 Examples of a

normal and an abnormal flare response are shown in Figure S1 in

Data S1. The two methods for analysis and an example of a poor

quality image are shown in Figure S2 in Data S1.

All examinations were conducted in a room with standardized

temperature (23�C) and lighting. Antihistamine was prohibited 24 h

prior to the examination. CNFL was selected as the primary CCM

parameter for comparison, while cold detection threshold (CDT) was

selected as the primary QST parameter for comparison, as these

parameters have consistently displayed the lowest variability across

different studies.24,27

2.3 | Statistical analysis

Categorical variables are expressed as percentages and compared using

Chi2 or Fisher's exact tests. Continuous data are expressed as mean

± standard deviations (SD) or as medians with interquartile ranges (IQR)

depending on their distribution. Normality was assessed visually (histo-

grams and QQ-plots) and statistically (Shapiro–Wilk tests). A parametri-

cal comparison was done by paired student's t-tests or ANOVA. A non-

parametrical comparison was done by Kruskal-Wallis H test potentially

followed by pairwise Mann–Whitney U tests. Bonferroni-corrections

were applied where relevant. The significance level was set to p = 0.05.

Receiver operating characteristic (ROC)-curves were created using logis-

tic regression and used to estimate the area under the curve (AUC), and

calculate sensitivity, specificity, positive predictive value (PPV), and nega-

tive predictive value (NPV). Spearman's rank correlation coefficient was

used to determine correlations. ROC-curves were compared using the

approach proposed by Delong.28

Mean flare intensity and flare area size for each participant were

fitted as inverse exponential decay (Y¼A� 1�e�b�tð Þ� �
using least-

squares linear regression and a time-constant (timepoint of approxi-

mately 63.2% maximum mean intensity/area size) restricted between

zero and 15min.10 The fitting was done to mitigate cases where the

same participant had multiple bad quality images. Following this pro-

cedure, the maximal value for each parameter (mean flux intensity and

flare area) could be derived as the constant A with a corresponding

time constant (1b).

All analyses were performed using Stata/MP, Stata Statistical

Software: Release 16.1 (StataCorp LLC, College Station, TX:).

3 | RESULTS

3.1 | Demographics

There were 60 persons with T1DM: 33 with and 27 without DPN. Nine

participants did not undergo CCM due to previous refraction surgery. All

participants completed all other examinations. A total of 15 participants

received pain medication with duloxetine being the most common drug

(50% of participants with pain), followed by opioids (36%) and anticon-

vulsants (21%). Those receiving pain medication was not statistically

TABLE 1 Demographics and test
results

Variable T1DM-DPN (n = 27) T1DM + DPN (n = 33) P-Value

Age, y 47.0 [44.0; 57.0] 52.0 [46.0; 57.0] ns

Sex, % male 44.0% 55.0% ns

BMI, kg/m2 27.8 [25.6; 30.2] 26.9 [24.2; 31.0] ns

HbA1c, % 8.1 [7.3; 8.8] 8.8 [8.0; 9.5] >.01

Diabetes duration, y 25.0 [17.0; 34.0] 34.0 [28.0; 41.0] >.01

NCV, m/s 46.0 [32.0; 48.0] 6.0 [0.0; 38.0] >.01

NCA, μV 4.8 [1.9; 7.7] 0.9 [0.0; 2.4] >.01

CDT, �C 27.9 [19.4; 30.2] 17.8 [7.4; 22.8] >.01

HDT, �C 40.4 [37.5; 44.0] 45.3 [43.1; 49.2] >.01

CNFD, no./mm2 15.6 [12.5; 18.7] 10.0 [6.25; 12.5] >.01

CNBD, no./mm2 37.5 [31.2; 48.7] 17.2 [10.4; 21.9] >.01

CNFL, mm/mm2 16.3 [14.4; 17.8] 9.0 [7.3; 11.0] >.01

Abbreviations: BMI, body mass index, CDT, cold detection threshold, CNBD, corneal nerve branch

density, CNFD, corneal nerve fiber density, CNFL, corneal nerve fiber length, DPN, diabetic peripheral

neuropathy, HbA1c, glycated hemoglobin A1c, HDT, heat detection threshold, MNSI, Michigan

Neuropathy Screening Instrument, NCA, nerve conduction amplitude (sural nerve), NCV, Nerve

conduction velocity (sural nerve), PDPN, painful diabetic peripheral neuropathy, T1DM, type 1 diabetes

mellitus.
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different from other participants with DPN (p > 0.05). The participants

with DPN generally had higher hemoglobin A1c, and longer diabetes

duration, than those without DPN (all p < 0.01). Participant characteris-

tics and test results from QST and CCM can be found in Table 1 and

Figure S3 in Data S1.

3.2 | Association between mean flare intensity and
flare area size

There was a strong linear positive correlation between the maximum

mean flare intensity and the maximum flare area size (ρ = 0.77,

p < 0.001). The results are depicted in Figure 1.

3.3 | Examination time needed to distinguish
people with and without neuropathy

The time required before mean flare intensity and flare area size were

able to differentiate between participants with T1DM + DPN and

T1DM-DPN differed (p < 0.01). The measurements of mean flare

intensity were able to differentiate the two groups after 6 min

(p < 0.01), while the measurements of flare area size were able to dif-

ferentiate the two groups after only 4 min (p < 0.01). The results are

displayed in Table 2. Comparable data from healthy controls are dis-

played in Table S4 in Data S1.

3.4 | Diagnostic performance

3.4.1 | The axon-reflex flare response versus
corneal confocal microscopy

The diagnostic performance of flare area size with CNFL as reference

was highest after 6–15 min. The calculated max flare area size had a

similar performance (Tables 3 and 4).

F IGURE 1 Relationship between maximum flare area size and
maximum mean flare intensity T
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The diagnostic performance of mean flare intensity with CNFL as

reference was highest after 5–15 min. The calculated max flare inten-

sity had a similar performance (Tables 3 and 4). The calculated max

flare area size had a better diagnostic performance than the calculated

max mean flare intensity (p < 0.01) and performed better at every sin-

gle timepoint from minute 7 and onward (all p < 0.05).

3.4.2 | Axon-reflex flare response versus
quantitative sensory testing

The diagnostic performance of flare area size with the cold detection

threshold as reference was highest after 7–15 min. The calculated

max flare area size had a similar performance (Tables 3 and 4).

The diagnostic performance of mean flare intensity with the

cold detection threshold as reference was highest after 8–15 min.

The calculated max flare intensity had a similar performance

(Tables 3 and 4). The calculated max flare area size had a better

diagnostic performance than mean flare intensity (p = 0.02) and

TABLE 3 Diagnostic performance of flare area size and mean flare intensity

Diagnostic
performance Min 3 Min 4 Min 5 Min 6 Min 7 Min 8 Min 9 Min 10 Min 11 Min 12 Min 13 Min 14 Min 15

Corneal confocal microscopy (Corneal nerve fiber length)

Flare area size

Sensitivity 70% 66% 71% 80% 80% 82% 79% 79% 79% 74% 74% 79% 80%

Specificity 72% 67% 67% 79% 79% 80% 79% 80% 79% 76% 76% 82% 79%

PPV 72% 66% 68% 80% 80% 80% 80% 79% 79% 76% 76% 81% 79%

NPV 70% 67% 70% 79% 79% 82% 79% 80% 80% 74% 74% 80% 78%

AUC 0.76 0.77 0.81 0.85 0.86 0.88 0.88 0.88 0.88 0.87 0.86 0.85 0.86

Mean flare intensity

Sensitivity 63% 66% 66% 66% 70% 71% 72% 72% 74% 72% 74% 63% 70%

Specificity 62% 69% 68% 67% 72% 79% 74% 71% 77% 74% 74% 67% 72%

PPV 63% 68% 68% 66% 72% 67% 74% 72% 76% 74% 74% 65% 72%

NPV 62% 68% 66% 67% 70% 74% 72% 71% 75% 72% 74% 65% 70%

AUC 0.64 0.69 0.74 0.75 0.77 0.75 0.77 0.77 0.79 0.79 0.78 0.73 0.72

Quantitative sensory testing (Cold detection threshold)

Flare area size

Sensitivity 61% 70% 67% 74% 68% 72% 74% 74% 79% 79% 77% 76% 80%

Specificity 72% 77% 69% 72% 75% 78% 77% 78% 81% 78% 77% 78% 83%

PPV 73% 79% 73% 76% 77% 80% 80% 80% 83% 81% 80% 80% 85%

NPV 60% 68% 63% 70% 66% 70% 71% 72% 76% 76% 73% 74% 76%

AUC 0.73 0.80 0.80 0.83 0.85 0.87 0.87 0.88 0.90 0.89 0.88 0.89 0.90

Mean flare intensity

Sensitivity 61% 63% 64% 63% 66% 69% 70% 72% 74% 71% 72% 67% 68%

Specificity 61% 63% 68% 69% 69% 72% 69% 74% 74% 68% 71% 69% 69%

PPV 66% 68% 71% 71% 73% 74% 73% 78% 78% 67% 76% 72% 73%

NPV 56% 58% 61% 60% 63% 67% 65% 68% 70% 72% 68% 64% 64%

AUC 0.70 0.71 0.69 0.76 0.73 0.80 0.77 0.80 0.80 0.75 0.80 0.80 0.82

Note: Abnormal corneal nerve fiber length (CNFL) or abnormal cold detection threshold (CDT) are used as a reference. Grey shades marks timeslots that

had significantly worse diagnostic performance than the optimal timeslot (marked in bold).

TABLE 4 Diagnostic performance of calculated max mean area
size and calculated max flare intensity

Diagnostic

performance

Corneal confocal

microscopy (CNFL)

Quantitative sensory

testing (CDT)

Flare area size

Sensitivity 79% [63%–89%] 80% [64%–92%]

Specificity 80% [80%–96%] 83% [70%–92%]

PPV 80% [64%–91%] 85% [69%–96%]

NPV 78% [62%–89%] 77% [63%–89%]

AUC 0.88 [0.80–0.96] 0.91 [0.84–0.97]

Mean flare intensity

Sensitivity 70% [54%–83%] 75% [60%–87%]

Specificity 74% [57%–87%] 74% [57%–88%]

PPV 74% [57%–87%] 79% [63%–90%]

NPV 70% [54%–83%] 70% [53%–84%]

AUC 0.77 [0.66–0.88] 0.81 [0.72–0.91]

Note: Abnormal corneal nerve fiber length (CNFL) and abnormal cold

detection threshold (CDT) are used as a reference.
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performed better at every single timepoint from minute 11 and

onward (all p < 0.05).

4 | DISCUSSION

The study provides evidence that measurements of flare area size are

superior to mean flare intensity, with faster examinations for differentia-

tion between T1DM with and without DPN and better agreement with

established methods (QST and CCM). In addition, the study showed that

flare area size had the highest diagnostic performance 7–15 min after

application of histamine, and that this interval was non-inferior to a full

15 min examination. This indicates that only 7 min of examination time

may be sufficient for future use/studies in DPN.

4.1 | Histamine for evoking the axon-reflex flare
response

Few studies have previously explored histamine as a mediator for an

axon-reflex flare response in diabetes. In a small study, the authors

found a diminished response to both histamine, capsaicin, and substance

P in people with DPN compared to controls.29 Likewise, we previously

reported a diminished response in people with T1DM and DPN com-

pared to people without DPN and healthy controls.10 Studies using local

heating have repeatedly validated the axon-reflex flare response tech-

nique against QST, CCM, and skin biopsies, and although strong longitu-

dinal datasets are yet to be published, small studies and preliminary

results have indicated that the technique might be suitable to assess the

severity of small fiber neuropathy.6,8,9,30

The finding that flare area size is superior to mean flare intensity is in

line with most studies using local heating, although the reasoning is not

the same. When using local heating, a heating probe with a set tempera-

ture of 44�C is applied to the skin for approximately 30 min, which causes

increased blood flow irrespective of the function of small cutaneous

C-fibers.6,31 This interaction was confirmed in a study using capsaicin to

attenuate the axon-reflex flare response prior to local heating, which

caused the flare area size, but not the maximal flare intensity, to dimin-

ish.31 Similarly, in studies using iontophoresis of acetylcholine, the maxi-

mal flux is also considered an expression of microvascular function rather

than a neurogenic response, which is again due to a direct interaction

between a prolonged electrochemical stimulus and the endothelium.32,33

This interaction is not present when using a skin-prick application of his-

tamine, as the axon-reflex flare response generated is thought to be

entirely neurogenic. Despite this, the flare area size still seems to be a

superior measurement also following a skin-prick application of histamine.

4.2 | Diagnostic performance of the axon-reflex
flare response

Studies assessing the diagnostic performance of the axon-reflex flare

response are variable and sparse, but generally indicate good results

when assessing DPN. One study found a sensitivity of 86% for diag-

nosing mixed-fiber neuropathy in diabetes using local heating, while

another found a sensitivity of 79% with a corresponding AUC of 0.75

using the same method.34,35 Both results are in line with data from

our present study, although differences in methodology make direct

comparison across studies impossible. This issue is also apparent from

a recent meta-analysis of the heat-induced axon-reflex flare response,

where the authors fail to prove the diagnostic ability to distinguish

between people with different degrees of neuropathy due to very

few studies being directly comparable.36

Our present study also provides information about the develop-

ment of the axon-reflex flare response following a skin-prick applica-

tion of histamine. From our data, the diagnostic performance of the

flare area size seems to steadily increase for the first 7 to 10 min,

and then to plateau (Table 3). However, it appears that the optimal

compromise between examination time and performance is some-

where around the 6- to-7-min mark, where the diagnostic perfor-

mance is statistically similar and still allows for rapid examinations.

The optimal duration is however completely reliant on the situation

and goals, as smaller-sized research trials might opt to wait for the

optimal time, while larger population studies or clinical applications

might prefer a shorter examination time over a slightly better

performance.

4.3 | Limitations

The present study does have several limitations. First, the proposed

skin-prick application for delivery of histamine has so far proven safe

and reliable, but the reduced examination time and simplicity come at

the price that the dissemination cannot be regulated and the fear that

glycosylated skin might interfere with delivery and response.31,37 In

addition, it cannot be ruled out that the skin-prick itself could causes

alterations in the C-fiber response, although the impact is thought to

be minimal. Therefore, a reproducibility study is warranted before the

method can be claimed as a faster and equally viable option to evoke

the axon-reflex flare response in diabetes. Secondly, there was no

comparison to local heating, and the method also needs to be tested

in a less selected cohort in which the diagnostic agreement between

methods might diminish. Thirdly, our cohort is relatively small and

does not include participants with pure small fiber neuropathy, which

means the generalizability is somewhat limited. Finally, a comparison

to IENFD would have been desirable, but was unfortunately not avail-

able in the present cohort.

5 | CONCLUSIONS

The axon-reflex flare response to histamine skin-prick parameters

assessed 6–7 min after application was as sensitive as QST and CCM

in distinguishing people with T1DM and DPN from those with T1DM

without DPN. Flare area size was superior to flare intensity, with a

more rapid examination time for differentiating groups and the best
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agreement with established methods. Overall, the reduction in exami-

nation time might help facilitate future clinical use.
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