
 

  

 

Aalborg Universitet

Using a Genetic Algorithm to Find Molecules with Good Docking Scores

Steinmann, Casper; Jensen, Jan Halborg

Published in:
PeerJ

DOI (link to publication from Publisher):
10.26434/chemrxiv.13525589
10.7717/peerj-pchem.18

Creative Commons License
CC BY 4.0

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Steinmann, C., & Jensen, J. H. (2021). Using a Genetic Algorithm to Find Molecules with Good Docking Scores.
PeerJ, 3, 1-16. https://doi.org/10.26434/chemrxiv.13525589, https://doi.org/10.7717/peerj-pchem.18

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 21, 2024

https://doi.org/10.26434/chemrxiv.13525589
https://doi.org/10.7717/peerj-pchem.18
https://vbn.aau.dk/en/publications/fbe0fc58-789d-4cb1-bb9e-59578fee7cb3
https://doi.org/10.26434/chemrxiv.13525589
https://doi.org/10.7717/peerj-pchem.18


Using a genetic algorithm to find molecules
with good docking scores
Casper Steinmann1 and Jan H. Jensen2

1Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
2Department of Chemistry, University of Copenhagen, Copenhagen, Denmark

Corresponding author:
Casper Steinmann, Jan H. Jensen

Email address: css@bio.aau.dk, Twitter @caspersteinmann; jhjensen@chem.ku.dk, Twitter
@janhjensen

ABSTRACT

A graph-based genetic algorithm (GA) is used to identify molecules (ligands) with high absolute docking
scores as estimated by the Glide software package, starting from randomly chosen molecules from the
ZINC database, for four different targets: Bacillus subtilis chorismate mutase (CM), human β2-adrenergic
G protein-coupled receptor (β2AR), the DDR1 kinase domain (DDR1), and β -cyclodextrin (BCD). By the
combined use of functional group filters and a score modifier based on a heuristic synthetic accessibility
(SA) score our approach identifies between ca 500 and 6000 structurally diverse molecules with scores
better than known binders by screening a total of 400,000 molecules starting from 8000 randomly
selected molecules from the ZINC database. Screening 250,000 molecules from the ZINC database
identifies significantly more molecules with better docking scores than known binders, with the exception
of CM, where the conventional screening approach only identifies 60 compounds compared to 511
with GA+Filter+SA. In the case of β2AR and DDR1 the GA+Filter+SA approach finds significantly more
molecules with docking scores lower than -9.0 and -10.0. The GA+Filters+SA docking methodology is
thus effective in generating a large and diverse set of synthetically accessible molecules with very good
docking scores for a particular target. An early incarnation of the GA+Filter+SA approach was used to
identify potential binders to the COVID-19 main protease and submitted to the early stages of the COVID
Moonshot project, a crowd-sourced initiative to accelerate the development of a COVID antiviral.

INTRODUCTION

Docking of molecules to protein targets is an important part of computer aided drug discovery. [1] One
use of molecular docking is high throughput virtual screening (HTVS) of libraries of known molecules.
Recent studies have show that such HTVS of hundreds of millions [2] or even billions of molecules [3] are
possible. However, such large numbers pale in comparison with the estimated 1060 small molecules that
make up chemical space.

The only practical way to search this space is to use search algorithms to identify interesting sub-
spaces of manageable sizes. Historically, most work in this area as it relates to drug discovery have
used evolutionary search algorithms to address this problem and such methods have also been applied
to docking. The use of evolutionary algorithms in drug discovery has been reviewed by Devi et al. [4].
Examples involving docking include work by Pegg et al. [5], Nicolaou et al. [6], and Daeyaert and Deem [7]

who all use genetic algorithms (GA) to optimise docking scores obtained by the DOCK, [8], Glamdock, [9]

Autodoc-Vina [10] programs, respectively. All three methods combine predefined molecular fragments in
order to help ensure that the final molecules are synthetically accessible. Very recently, Cofala et al. [11]

and Nigam et al. [12] presented SELFIES [13]-based (mutations only) GA approaches for optimising dock-
ing scores. Cofala et al. [11] optimised QuickVina 2 [14] docking scores for COVID-19 main protease
(MPro). However, the several of the presented molecules in this study appear synthetically inaccessible.
Nigam et al. [12] optimised docking scores to 5-hydroxytryptamine receptor 1B and Cytochrome P450
2D6 by interpolating between a known binder to each target. Finally, Cieplinski et al. [15] and Boitreaud



et al. [16] have used variational autoencoders [17;18] to optimise SMINA [19] and Autodoc-Vina docking
scores for several targets. Cieplinski et al. [15] noted difficulties in finding good binders using this approach
while Boitreaud et al. [16] achieved some success.

In this paper we show that a non-fragment based GA [20] can be used to find more synthetically
accessible molecules with good Glide [21;22] docking scores compared to conventional HTVS of libraries.
We note that our study does not address whether docking is useful for drug discovery.

COMPUTATIONAL METHODOLOGY

A graph-based genetic algorithm [20] (GA) is used to identify molecules (ligands) with high absolute dock-
ing scores as estimated by the Glide software package [21;22] using either the faster HTVS or the slower SP
scoring functions. Five conformations of each molecule are generated using RDKit and minimized with
the MMFF94 force field. [23;24;25;26;27] The lowest energy conformer is used for docking. The population
size is 400 molecules, the mutation rate is 50%, and the number of generations is 50. The maximum
molecule size allowed is 30±5 non-hydrogen atoms. Molecules are chosen for mating with a probability
proportional to their scores (roulette selection) and the 400 best-scoring molecules are advanced to the
next generation (elitism). The initial population is chosen randomly from a 250,000-molecule subset of
the ZINC database [28] used in a previous study. [20]

As noted by Gao and Coley [29] and Brown et al. [30] generative models in general and GAs in par-
ticular often generate molecules with known chemically unstable bonds or molecules that are difficult
to synthesise. We address this issue in three ways: we use Walters rd filters code (following Brown
et al. [30]), a score modifier suggested by Gao and Coley [29] based on a heuristic synthetic accessibility
(SA) score [31], and a combination of the two. The rd filers code contains several sets of SMARTS
strings defining unstable bonds or groups. We use all the sets and eliminate any molecule with any of
these moieties from the population. In the score modifier approach, the docking score is multiplied by a
modified Gaussian function that ranges from 0 to 1 for high and low values of the SA score, respectively
(a low SA score indicates a synthetically accessible molecule). We found that the heuristic SA score
depends on the protonation state of acid/base groups in is lower (better) for the neutral protonation state,
so we neutralise such groups before computing the SA score.

The synthetic accessibility of the molecules in the final populations are estimated using the Molecule.one
software package. [32] The calculations are submitted remotely to Molecule.one servers using a license
generously provided by Molecule.one for this project. Just as for the heuristic SA score it is important to
supply this algorithm with the neutralised forms of the molecules.

The docking targets are Bacillus subtilis chorismate mutase (CM), human β2-adrenergic G protein-
coupled receptor (β2AR), the DDR1 kinase domain (DDR1), and β -cyclodextrin (BCD). For the three
proteins we use the 2CHT, [33] 2RH1, [34] and 3ZOS [35] crystal structures from the Protein Data Bank [36],
respectively. The proteins are prepared for docking with the Protein Preparation Wizard [37] in the Mae-
stro [38] software by protonating all residues assuming pH 7 with PropKa. [39] All three protein structures
contain co-crystallized ligands: a transition state analog (TSA) for CM, carazolol for β2AR, and ponab-
tidin for DDR1. We redock these ligands to their respectively targets to get an idea of what docking score
one would expect for known binders. We determined the protonation state and overall charge of each
ligand (-2 for TSA, 0 for carazolol, and +1 for ponabtidin) by visual inspection of the crystal structure. In
addition, we dock the known BCD-binder 6-(phenylamino)naphthalene-2-sulfonate (2,6-ANS) to BCD
in the anionic form based on the typical pKa of the sulfonate group. The structures of the ligands are
displayed in Table 1.

RESULTS AND DISCUSSION
We perform 20 different GA searches using the HTVS scoring function for each target. With a population
size of 400 this generates up to 8000 different potential binders for each target in the final populations
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Table 1. Docking scores, heuristic synthetic accessibility scores, and Molecule.one scores for known
binders.

Target Molecule Charge HTVS SP SA score Molecule.one

CM TSA -2 -7.5 -8.1 5.4 10.0

β2AR Carazolol 0 -6.8 2.6 2.9

DDR1 Ponatinib +1 -6.9 2.9 2.3

BCD 2,6-ANS -1 -4.4 1.8 2.2

Table 2. Columns 2-5 list the number of molecules (out of a total of about 8000) with docking scores
higher than known binders (Table 1) without any structural screening (GA), with the group-filters
(+Filter), with a heuristic synthetic accessibility score (SA), and with both Filter and SA. The HTVS
scoring methodology is used except for CM(SP) where the SP scoring methodology is used. Columns 6
and 7 list the corresponding number molecules with scores lower than -9.0 and -10.0 obtained with
+Filter+SA. The last three columns list the corresponding number of molecules obtained by docking all
the molecules from the 250K ZINC subset.

GA +Filter +SA +Filter+SA <-9.0 <-10.0 ZINC <-9.0 <-10.0

CM 7963 7300 181 511 0 0 60 0 0
CM(SP) 4638
β2AR 7994 7879 2493 2125 164 10 16,262 86 1
DDR1 7940 7239 2469 2119 378 38 11,713 199 8
BCD 8000 7947 6214 6218 0 0 152,209 0 0

Table 3. The average score and standard deviation of all the molecules in the combined final populations
of 20 GA searches, except for ”ZINC” which lists the corresponding values for the 8000 top scoring
molecules obtained using the 250K ZINC subset.

GA +Filter +SA +Filter+SA ZINC

CM -8.3±0.4 -8.7±0.7 -5.8±1.0 -5.8±1.3 -6.1±0.4
CM(SP) -8.2±0.3
β2AR -10.1±0.6 -9.4±0.4 -7.0±1.2 -7.0±1.2 -8.0±0.3
DDR1 -10.0±0.6 -9.9±0.5 -6.6±1.5 -6.4±1.6 -7.7±0.5
BCD -9.1±0.2 -8.2±0.5 -5.6±0.8 -5.3±0.8 -5.7±0.2
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Table 4. Fraction of the 100 top scoring molecules that are deemed synthetically accessible by
Molecule.one.

GA +Filter +SA +Filter+SA ZINC

CM 0.00 0.03 0.45 0.91 0.83
β2AR 0.00 0.05 0.55 0.76 0.84
DDR1 0.26 0.29 0.64 0.88 0.82
BCD 0.03 0.02 0.24 0.85 0.89

(there are a few duplicates for some targets). Column 2 in Table 2 shows the number of molecules that
have better (more negative) scores than known binders to the four targets (Table 1). Virtually all the
molecules in the final populations have better scores than the known binders using the simpler HTVS
scoring methodology. The average scores shown in Table 3 show that the scores are not only better, but
considerably better, than for the known binders, except for CM where the decrease is more modest (0.8
compared to 3.1-4.7). When using the more complex SP scoring function for CM the number of molecule
with better scores drops to 4638 compared to 7963, indicating that any conclusions drawn below is likely
to depend on the scoring function. However, given the computational expense of the SP scoring function
and the relatively large number of docking simulations performed in this study we continue using the
HTVS scoring function below.

While these results are encouraging visual inspection of some of the best scoring molecules (first
column of molecules in Figure 1) show that they do not resemble drug-like molecules, indicating that
they may be unstable and/or synthetically inaccessible. To quantify this property we compute a synthetic
accessibility score using the Molecule.one retrosynthesis package which is based on machine learning
algorithms and trained on a large number of reactions. Molecule.one returns a synthetic accessibility
score between 1 (very synthetically accessible) 10 (not synthetically accessible) and the fraction of the
100 best-scoring molecules with a Molecule.one score below 10 is shown in Column 2 of Table 4. The
only case for which a non-negligible fraction of molecules may be synthetically viable is DDR1 with 26%
while for the rest that fraction is very close to 0%.

This problem has been observed before for generative models by, for example, Gao and Coley [29],
Brown et al. [30], and Renz et al. [40]. We address this issue in three ways: we use Walters rd filters code
(following Brown et al. [30]), a score modifier based on a heuristic synthetic accessibility (SA) score [31]

suggested by Gao and Coley [29], and a combination of the two. The results are shown in Table 2 and
show that the use of filters has relatively little effect on the number of molecules with better scores than
the known binders and their average docking score . Unfortunately, there is also a negligible effect on the
fraction of molecules deemed synthetically accessible molecules by Molecules.one (Table 4). Inspection
of the highest scoring molecules for each target (second column of molecules in Figure 1) reveals that
while the filters successfully prevented unstable bonding patterns, they do not prevent other reactive
moieties such as cyclopentadienes and cyclohexadiene-like motifs.

The use of the SA score modifier has a much bigger effect on the number of molecules with better
scores than the known binders and their average docking score. The effect is most pronounced for CM
where the number of good binders drops more than an order of magnitude to only 181 molecules, while
the decrease is about 70% for both β2AR and DDR1 and 23% for BCD. The most likely explanation
is that ligands that bind well in the CM binding pocket tend to have high (bad) SA scores compared to
the other targets. This is supported by the fact that the SA scores for the known binders TSA, carazolol,
ponatinib, and 2,6-ANS (Table 1) are 5.4, 2.6, 2.9, and 1.8, respectively. The corresponding Molecule.one
scores are 10.0, 2.9, 2.3, and 2.2, which indicates that the heuristic scores correlate well with the more
sophisticated ML approach used by Molecule.one. With fewer molecules in the final population with
high scores the average score necessarily increases (becomes less negative). The good news is that the
fraction of molecules in the final population that Molecule.one deems synthetically accessible increases
significantly to between 0.24 to 0.64. These fraction can be further increased to between 0.76 and 0.91,
with only negligible effect on the number of good binders in the final population, by using the score
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Figure 1. Highest scoring molecules from the final population of GA-docking runs (see text for
explanation) for the four different targets: CM (a-d), β2AR (e-h), DDR1 (i-l), and BCD (m-p). The scores
are shown in parentheses.

modifier together with the filters. The increase in good binders (to 511) in the case of CM is most likely
due to the stochastic nature of the GA searches.

A plot of the Molecule.one score vs the docking score (Figure 2a) obtained using Filters+SA shows
no correlation. Higher scoring molecules are thus not necessarily harder to synthesise and the top scoring
molecules for each target all have relatively low (good) synthetic accessibility scores. Furthermore, the
fractions of synthetically accessible molecules computed using the top 100 scoring molecules are thus
expected to be representative of the corresponding fractions for the entire final population.

A similar plot of the Tanimoto similarity to the best scoring molecule for each target vs docking
score (Figure 2b) also shows no correlation. The minimum and maximum similarity to the best scoring
molecules are in the range of about 0.2 - 0.6 and indicting a great deal of structural diversity among the
100 best scoring molecules for each target. The GA+Filters+SA docking methodology is thus effective in
generating a large and diverse set of synthetically accessible molecules with high docking scores for a
particular target.
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Figure 2. (a) Molecule.one score versus docking score for the 100 best binders predicted for the four
different targets using Filters and SA. (b) Tanimoto similarity to the best scoring molecule for each target
vs docking score for the 100 best binders predicted for the four different targets using Filters and SA.

Inspection of the top scoring molecules obtained with both filters and a score modifier (Figures 1
(final column) and S2) reveal fairly ordinary looking organic molecules except that the charged states for
CM and BCD (Figures 1d and p) are not reasonable for a pH of 7. Future studies using this approach
will need to correct this by, for example, including additional filters or adding a term to the score that
penalizes large deviations from empirically estimated pKa values.

Finally, while the accuracy of the chosen docking methodology is not a focus of this paper we do
note some encouraging signs for the HTVS scoring function in Glide. For example, all the top scoring
molecules for CM (Figure 1) are dianions just like the known binder TSA (Figure 1) and the CM substrate
chorismate. Only 327 out of the 250,000 molecules in the ZINC subset that the initial population is
randomly drawn from are dianions so the dianion motif is most likely generated by the GA. Similarly, for
the fluorene moiety seen in both carazolol and Figure 1g as well as two ethylene linked aromatic moieties
seen in ponatinib and Figures 1i and k, but with only 242 and 40 occurrences in the 250K ZINC subset,
respectively. For BCD there is a clear preference for both lipophilic (adamantane-like in Figure 1m)
moieties favoring binding to the pocket as well as hydrophilic moieties which are also representative of
the structures that bind favorably according to experiments.

Comparison to conventional HTVS

While the GA+Filter+SA results are encouraging they do involve the docking of 400,000 compounds and
the question whether equally good results can obtained by simply screening a library of molecules of
similar size. To answer this question we dock all 250,000 molecules in the ZINC subset from which we
sample the initial population for the GA searches. This approach identifies significantly more molecules
with better docking scores than known binders, with the exception of CM, where the conventional HTVS
approach only identifies 60 compounds compared to 511 with GA+Filter+SA (Table 2). However, the
known binders for the remaining targets have relatively low docking scores of less than -7.0. In the case
of β2AR and DDR1 the GA+Filter+SA approach finds significantly more molecules with docking scores
lower than -9.0 and -10.0. Here, GA+Filter+SA finds 1.9 times as many molecules with a docking score
lower than -9.0 by docking only 1.6 times as many molecules. Overall, the number of molecules deemed
synthetically accessible by Molecule.one is about the same as for GA+Filter+SA: somewhat higher for
β2AR and BCD and somewhat lower for CM and DDR1 (Table 4, the top-10 scoring molecules for each
target is shown in Figure S3). The GA+Filter+SA therefore seems like a promising approach for finding
molecules with very good docking scores compared to conventional HTVS of libraries.
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Figure 3. Molecules submitted to the second and third round of the COVID moonshot project (with the
corresponding XP docking score in parenthesis). Next to each submitted molecule is a molecule that was
selected for further study by the project organizers that most closely matches our submissions (with the
corresponding ECFP4 Tanimoto similarity below).

The COVID Moonshot project

The COVID Moonshot project, [41] a crowd-sourced initiative to accelerate the development of a COVID
antiviral, was announced in mid-March 2020. The organizers of the project provided several crystal
structures of the COVID-19 main protease (MPro) in complex with several small fragments [42] (Figure S1)
and invited the scientific community use this data to construct and submit potential MPro inhibitors for
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further experimental verification. Though we were in a relatively early stage of this project we decided to
build upon our methodology as it was then, to construct candidates for the second and third rounds of
submissions.

For Round 2 we perform 20 GA searches with a population size of 400 using the HTVS+Filter+SA
as above and the 6LU7 crystal structure of MPro. [43] However, at that early stage we sampled our initial
population from the first 1000 molecules of the 250K ZINC database subset. Also, we were not yet aware
of the importance of neutralizing acid base groups before computing the SA score and checking synthetic
accessibility, but this does not seem to be important for this target. Based on experience with the other
targets we did increase the maximum molecule size to 50± 5 non-hydrogen atoms. All molecules in
the final population are re-scored using the Glide XP scoring function [44]. The 128 molecules with a
score better than or equal to -7.0 are selected and subjected to retrosynthetic analysis using the ASKCOS
software package [45] using the settings suggested by Gao and Coley [29]. Molecules with less than 4
synthetic steps are selected and re-docked using the XP scoring methodology. The six molecules with XP
scores better than -7.5 (Figure 3)a-f were then submitted to Round 2 in March 30th, 2020. The feedback
on Twitter was that the molecules were rather small and more fragment-like than drug-like.

For Round 3 we use Glide SP rather than HTVS for the GA search, use Molecule.one in addition
to ASKCOS to determine synthetic accessibility for molecules with XP scores better than -7.0, and
eliminate all molecules with for which both ASKCOS and Molecule.one fail to find a retrosynthetic route.
The remaining 136 molecules are then re-docked using the XP scoring methodology and molecules are
selected from among the top-scoring molecules. We selected four molecules for submission to Round
3 (Figure 3g-j) based on their score, diversity (also relative to our Round 2 submissions), and size and
submitted them to Round 3 on April 2nd, 2020. (We also submitted four molecules selected based purely
on their score, i.e. with synthetic accessibility considerations based on ASKCOS and Molecule.one,
which are not discussed further.)

Of the 10 submitted molecules, one was selected by the organizers (Figure 3b) for synthesis and
assay, but showed relatively low inhibition (10% average inhibition at 20 µM) and was not pursued
further. Many of our submissions feature a urea linkage or amide linkage that are also present in many
of the fragment binders identified by the COVID Moonshot organizers (Figure S1). In fact one of our
submissions (Figure 3f) differs by only a few atoms from one of the fragments (Figure S1(l)) as well as
one the submissions selected for further study. Overall, these results are quite encouraging given that our
submissions are generated starting from randomly selected molecules.

CONCLUSION AND OUTLOOK

A graph-based genetic algorithm [20] (GA) is used to identify molecules (ligands) with high absolute dock-
ing scores as estimated by the Glide software package, [21;22] starting from randomly chosen molecules
from the ZINC database. We perform 20 different GA searches using the HTVS scoring function each for
four different targets: Bacillus subtilis chorismate mutase (CM), human -adrenergic G protein-coupled
receptor (β2AR), the DDR1 kinase domain (DDR1), and β -cyclodextrin (BCD). With a population size
of 400 this approach generates up to 8000 different potential binders for each target, almost all of which
have a better docking score than known binders (Figures 1 and 2). However, many of these molecules do
not resemble drug-like molecules (Figures 1 and S2) and virtually none of the top-100 scoring molecules
are deemed synthetically accessible by the retrosynthetic software package Molecule.one [32] (Table 4).

Following suggestions by Brown et al. [30] and Gao and Coley [29] we show that the synthetic accessi-
bility can be increased significantly by the combined use of Walters rd filters code and a score modifier
based on a heuristic synthetic accessibility (SA) score [31] (GA+Filter+SA). However, this also leads to a
drop in the number of molecules with scores better than known binders of between 22% (BCD) and 95%
(CM). The GA+Filter+SA approach thus identifies between roughly 500 and 6000 structurally diverse
(Table 2 and Figure S2) molecules with scores better than known binders by screening a total of 400,000
molecules starting from 8000 randomly selected molecules from the ZINC database. However, screening
250,000 molecules from the ZINC database identifies significantly more molecules with better docking
scores than known binders, with the exception of CM, where the conventional HTVS approach only
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identifies 60 compounds compared to 511 with GA+Filter+SA (Table 2). The known binders for the
remaining targets have relatively low docking scores of less than -7.0. In the case of β2AR and DDR1
the GA+Filter+SA approach finds significantly more molecules with docking scores lower than -9.0 and
-10.0. The GA+Filters+SA docking methodology is thus effective in generating a large and diverse set
of synthetically accessible molecules with very good docking scores for a particular target. However,
for targets such as CM that predominantly binds charged ligands this approach will need to correct for
unphysical protonation states by, for example, including additional filters or adding a term to the score
that penalizes large deviations from empirically estimated pKa values.

An early incarnation of the GA+Filter+SA approach was used to identify potential binders to the
COVID-19 main protease (MPro) and submitted to the early stages of the COVID Moonshot project, [41]

a crowd-sourced initiative to accelerate the development of a COVID antiviral. Of the 10 submitted
molecules, one was selected by the COVID Moonshot organizers (Figure 3b) for synthesis and assay, but
showed relatively low inhibition (10% average inhibition at 20 µM) and was not pursued further. Many
of our submissions feature a urea linkage or amide linkage that are also present in many of the fragment
binders identified by the COVID Moonshot organizers (Figure S1). In fact one of our submissions (Figure
3f) differs by only a few atoms from one of the fragments (Figure S1l as well as one the submissions
selected for further study. Overall, these results are quite encouraging given that our submissions are
generated starting from randomly selected molecules.

As pointed out by Cieplinski et al. [15] docking scores may also be used as a challenging test for
generative models that ”reflect the complexity of real discovery problems”. [46] Our study suggests that
finding synthetically accessible molecules with good docking scores for CM presents an especially
challenging objective function, and more so if the SP docking score is used. However, a benchmark based
on a commercial software package such as Glide is not ideal and it remains to be seen whether this target
is equally challenging using open source docking software such as SMINA. [19]
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Martin, M. E. M. Noble, P. O’Brien, A. Powell, R. N. Reddi, R. Skyner, M. Snee, M. J. Waring,
C. Wild, N. London, F. von Delft, M. A. Walsh, Nature Communications 2020, 11, year.

[43] Z. Jin, X. Du, Y. Xu, Y. Deng, M. Liu, Y. Zhao, B. Zhang, X. Li, L. Zhang, C. Peng, Y. Duan, J. Yu,
L. Wang, K. Yang, F. Liu, R. Jiang, X. Yang, T. You, X. Liu, X. Yang, F. Bai, H. Liu, X. Liu, L. W.
Guddat, W. Xu, G. Xiao, C. Qin, Z. Shi, H. Jiang, Z. Rao, H. Yang, Nature 2020, 582, 289–293.

[44] R. A. Friesner, R. B. Murphy, M. P. Repasky, L. L. Frye, J. R. Greenwood, T. A. Halgren, P. C.
Sanschagrin, D. T. Mainz, Journal of Medicinal Chemistry 2006, 49, 6177–6196.

[45] C. W. Coley, D. A. Thomas, J. A. M. Lummiss, J. N. Jaworski, C. P. Breen, V. Schultz, T. Hart, J. S.
Fishman, L. Rogers, H. Gao, R. W. Hicklin, P. P. Plehiers, J. Byington, J. S. Piotti, W. H. Green, A. J.
Hart, T. F. Jamison, K. F. Jensen, Science 2019, 365, eaax1566.

[46] C. W. Coley, N. S. Eyke, K. F. Jensen, Angewandte Chemie International Edition 2020, 59, 23414–
23436.

11/16



SUPPORTING INFORMATION
Code and data
The code used in this study is available at https://github.com/cstein/GB-GA/tree/feature-glide docking.
SMILES strings, docking scores, and Molecule.one scores can be found at https://github.com/cstein/GB-
GA docking supporting information.

Supplementary Figures and Tables

Figure S1. Fragments that bind non-covalently to MPro found by the COVID Moonshot organizers. [1]

The organizers also found many covalently bound inhibitors that are not shown here.
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Figure S2. Top 10 scoring molecules obtained with GA+Filter+SA for each target (CM, β2AR, DDR1,
and BCD) together with the HTVS docking score, the ECFP4 Tanimoto similarity to the best scoring
molecule (in parenthesis), and the Molecule.one score [in square brackets].
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Figure S3. Top 10 scoring molecules obtained by screening the ZINC subset for each target (CM,
β2AR, DDR1, and BCD) together with the HTVS docking score, the ECFP4 Tanimoto similarity to the
best scoring molecule (in parenthesis), and the Molecule.one score [in square brackets].
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Figure S4. (a) Molecule.one score versus docking score for the 100 best binders predicted for the four
different targets by screening the ZINC subset. (b) Tanimoto similarity to the best scoring molecule for
each target vs docking score for the 100 best binders predicted for the four different targets by screening
the ZINC subset.
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